153
Views
11
CrossRef citations to date
0
Altmetric
Original Research

Hypophosphatemia at Admission is Associated with Increased Mortality in COVID-19 Patients

, & ORCID Icon
Pages 5313-5322 | Published online: 07 Sep 2021

References

  • Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262–265. doi:10.1177/0004563220922255
  • De Carvalho H, Richard MC, Chouihed T, et al. Electrolyte imbalance in COVID-19 patients admitted to the Emergency Department: a case-control study. Intern Emerg Med. 2021;1–6. doi:10.1007/s11739-021-02632-z
  • Bavaro DF, Diella L, Fabrizio C, et al. Peculiar clinical presentation of COVID-19 and predictors of mortality in the elderly: a multicentre retrospective cohort study. Int J Infect Dis. 2021;105:709–715. doi:10.1016/j.ijid.2021.03.021
  • Liu J, Han P, Wu J, Gong J, Tian D. Prevalence and predictive value of hypocalcemia in severe COVID-19 patients. J Infect Public Health. 2020;13(9):1224–1228. doi:10.1016/j.jiph.2020.05.029
  • Bennouar S, Cherif AB, Kessira A, Bennouar DE, Abdi S. Vitamin D deficiency and low serum calcium as predictors of poor prognosis in patients with severe COVID-19. J Am Coll Nutr. 2021;40(2):104–110. doi:10.1080/07315724.2020.1856013
  • Liu S, Zhang L, Weng H, et al. Association between average plasma potassium levels and 30-day mortality during hospitalization in patients with COVID-19 in Wuhan, China. Int J Med Sci. 2021;18(3):736–743. doi:10.7150/ijms.50965
  • Hu W, Lv X, Li C, et al. Disorders of sodium balance and its clinical implications in COVID-19 patients: a multicenter retrospective study. Intern Emerg Med. 2020:1–10. doi:10.1007/s11739-020-02515-9
  • De Carvalho H, Letellier T, Karakachoff M, et al. Hyponatremia is associated with poor outcome in COVID-19. J Nephrol. 2021:1–8. doi:10.1007/s40620-021-01036-8
  • Ruiz-Sánchez JG, Núñez-Gil IJ, Cuesta M, et al. Prognostic impact of hyponatremia and hypernatremia in COVID-19 pneumonia. A HOPE-COVID-19 (health outcome predictive evaluation for COVID-19) registry analysis. Front Endocrinol. 2020;11:599255. doi:10.3389/fendo.2020.599255
  • Alfano G, Ferrari A, Fontana F, et al. Hypokalemia in patients with COVID-19. Clin Exp Nephrol. 2021;25(4):401–409. doi:10.1007/s10157-020-01996-4
  • Moreno PO, Leon-Ramirez JM, Fuertes-Kenneally L, et al. Hypokalemia as a sensitive biomarker of disease severity and the requirement for invasive mechanical ventilation requirement in COVID-19 pneumonia: a case series of 306 Mediterranean patients. Int J Infect Dis. 2020;100:449–454. doi:10.1016/j.ijid.2020.09.033
  • Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with coronavirus disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi:10.1001/jamanetworkopen.2020.11122
  • Tezcan ME, Dogan Gokce G, Sen N, Zorlutuna Kaymak N, Ozer RS. Baseline electrolyte abnormalities would be related to poor prognosis in hospitalized coronavirus disease 2019 patients. New Microbes New Infect. 2020;37:100753. doi:10.1016/j.nmni.2020.100753
  • Santana e Meneses JF, Leite HP, de Carvalho WB, Lopes E Jr. Hypophosphatemia in critically ill children: prevalence and associated risk factors. Pediatr Crit Care Med. 2009;10(2):234–238. doi:10.1097/PCC.0b013e3181937042
  • Yang Y, Zhang P, Cui Y, et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury. Crit Care. 2013;17(5):R205. doi:10.1186/cc12900
  • Garagarza C, Valente A, Caetano C, Oliveira T, Ponce P, Silva AP. Hypophosphatemia: nutritional status, body composition, and mortality in hemodialysis patients. Int Urol Nephrol. 2017;49(7):1243–1250. doi:10.1007/s11255-017-1558-2
  • Federspiel CK, Itenov TS, Thormar K, Liu KD, Bestle MH. Hypophosphatemia and duration of respiratory failure and mortality in critically ill patients. Acta Anaesthesiol Scand. 2018;62(8):1098–1104. doi:10.1111/aas.13136
  • Yang HT, Yim H, Cho YS, et al. Change of serum phosphate level and clinical outcome of hypophosphatemia in massive burn patient. J Trauma Acute Care Surg. 2012;73(5):1298–1302. doi:10.1097/TA.0b013e3182701e09
  • Shah SK, Irshad M, Gupta N, Kabra SK, Lodha R. Hypophosphatemia in critically ill children: risk factors, outcome and mechanism. Indian J Pediatr. 2016;83(12–13):1379–1385. doi:10.1007/s12098-016-2188-x
  • Wang L, Xiao C, Chen L, Zhang X, Kou Q. Impact of hypophosphatemia on outcome of patients in intensive care unit: a retrospective cohort study. BMC Anesthesiol. 2019;19(1):86. doi:10.1186/s12871-019-0746-2
  • Berger MM, Appelberg O, Reintam-Blaser A, et al. Prevalence of hypophosphatemia in the ICU - results of an international one-day point prevalence survey. Clin Nutr. 2021;40(5):3615–3621.
  • Yang C, Ma X, Wu J, et al. Low serum calcium and phosphorus and their clinical performance in detecting COVID-19 patients. J Med Virol. 2021;93(3):1639–1651. doi:10.1002/jmv.26515
  • Yılmaz K, Şen V. Is vitamin D deficiency a risk factor for COVID-19 in children? Pediatr Pulmonol. 2020;55(12):3595–3601. doi:10.1002/ppul.25106
  • Pal R, Ram S, Zohmangaihi D, et al. High prevalence of hypocalcemia in non-severe COVID-19 patients: a Retrospective Case-Control Study. Front Med. 2020;7:590805. doi:10.3389/fmed.2020.590805
  • Min Y, Cheng L, Tu C, et al. Clinical characteristics of deceased hemodialysis patients affected by COVID-19. Int Urol Nephrol. 2021;53(4):797–802. doi:10.1007/s11255-020-02700-x
  • Ghazanfari T, Salehi MR, Namaki S, et al. Interpretation of hematological, biochemical, and immunological findings of COVID-19 disease: biomarkers associated with severity and mortality. Iran J Allergy Asthma Immunol. 2021;20(1):46–66.
  • Sabbagh Y, Giral H, Caldas Y, Levi M, Schiavi SC. Intestinal phosphate transport. Adv Chronic Kidney Dis. 2011;18(2):85–90. doi:10.1053/j.ackd.2010.11.004
  • Levi M, Gratton E, Forster IC, et al. Mechanisms of phosphate transport. Nat Rev Nephrol. 2019;15(8):482–500.
  • Biber J, Hernando N, Forster I. Phosphate transporters and their function. Annu Rev Physiol. 2013;75:535–550. doi:10.1146/annurev-physiol-030212-183748
  • Datta BN, Stone MD. Hyperventilation and hypophosphataemia. Ann Clin Biochem. 2009;46(Pt 2):170–171. doi:10.1258/acb.2008.008199
  • Pourhassan M, Müller MJ, Volkert D, Wirth R. Hypophosphatemia as a sign of malnutrition in older hospitalized patients. Eur J Clin Nutr. 2019;73(4):634–636. doi:10.1038/s41430-018-0251-6
  • Deger SM, Hung AM, Gamboa JL, et al. Systemic inflammation is associated with exaggerated skeletal muscle protein catabolism in maintenance hemodialysis patients. JCI Insight. 2017;2(22). doi:10.1172/jci.insight.95185
  • Rong YD, Bian AL, Hu HY, Ma Y, Zhou XZ. Study on relationship between elderly sarcopenia and inflammatory cytokine IL-6, anti-inflammatory cytokine IL-10. BMC Geriatr. 2018;18(1):308. doi:10.1186/s12877-018-1007-9
  • Bistrian BR. Role of the systemic inflammatory response syndrome in the development of protein-calorie malnutrition in ESRD. Am J Kidney Dis. 1998;32(6 Suppl 4):S113–S117. doi:10.1016/S0272-6386(98)70173-8
  • Uribarri J, El Shamy O, Sharma S, Winston J. COVID-19-associated acute kidney injury and quantified protein catabolic rate: a likely effect of cytokine storm on muscle protein breakdown. Kidney Med. 2021;3(1):60–63.e61. doi:10.1016/j.xkme.2020.09.011
  • van Kempen T, Deixler E. SARS-CoV-2: influence of phosphate and magnesium, moderated by vitamin D, on energy (ATP) metabolism and on severity of COVID-19. Am J Physiol Endocrinol Metab. 2021;320(1):E2–E6. doi:10.1152/ajpendo.00474.2020
  • van Niekerk G, Mitchell M, Engelbrecht A-M. Bone resorption: supporting immunometabolism. Biol Lett. 2018;14(2):20170783. doi:10.1098/rsbl.2017.0783
  • Mukherjee A, Ghosh R, Aftab G. Rhabdomyolysis in a patient with coronavirus disease 2019. Cureus. 2020;12(7):e8956.
  • Bülow Anderberg S, Luther T, Berglund M, et al. Increased levels of plasma cytokines and correlations to organ failure and 30-day mortality in critically ill Covid-19 patients. Cytokine. 2021;138:155389. doi:10.1016/j.cyto.2020.155389
  • Ghosn M, Attallah N, Badr M, et al. Severe acute kidney injury in critically ill patients with COVID-19 admitted to ICU: incidence, risk factors, and outcomes. J Clin Med. 2021;10(6):1217. doi:10.3390/jcm10061217
  • Hardenberg JB, Stockmann H, Aigner A, et al. Critical illness and systemic inflammation are key risk factors of severe acute kidney injury in patients with COVID-19. Kidney Int Rep. 2021;6(4):905–915. doi:10.1016/j.ekir.2021.01.011
  • Allan PJ, Ambrose T, Mountford C, et al. COVID-19 infection in patients with intestinal failure: U.K. experience. J Parenter Enteral Nutr. 2021. doi:10.1002/jpen.2087
  • Zhang J, Garrett S, Sun J. Gastrointestinal symptoms, pathophysiology, and treatment in COVID-19. Genes Dis. 2021;8(4):385–400.
  • Grasselli G, Zangrillo A, Zanella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323(16):1574–1581. doi:10.1001/jama.2020.5394
  • Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. doi:10.1001/jama.2020.1585
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7
  • Cinesi Gómez C, Peñuelas Rodríguez Ó, Luján Torné M, et al. Clinical consensus recommendations regarding non-invasive respiratory support in the adult patient with acute respiratory failure secondary to SARS-CoV-2 infection. Med Intensiva. 2020;44(7):429–438. doi:10.1016/j.medin.2020.03.005
  • Ottestad W, Søvik S. COVID-19 patients with respiratory failure: what can we learn from aviation medicine? Br J Anaesth. 2020;125(3):e280–e281. doi:10.1016/j.bja.2020.04.012
  • Li T, Zhang Y, Gong C, et al. Prevalence of malnutrition and analysis of related factors in elderly patients with COVID-19 in Wuhan, China. Eur J Clin Nutr. 2020;74(6):871–875. doi:10.1038/s41430-020-0642-3
  • Di Filippo L, De Lorenzo R, D’Amico M, et al. COVID-19 is associated with clinically significant weight loss and risk of malnutrition, independent of hospitalisation: a post-hoc analysis of a prospective cohort study. Clin Nutr. 2021;40(4):2420–2426. doi:10.1016/j.clnu.2020.10.043
  • Yu Y, Ye J, Chen M, et al. Malnutrition prolongs the hospitalization of patients with COVID-19 infection: a clinical epidemiological analysis. J Nutr Health Aging. 2021;25(3):369–373. doi:10.1007/s12603-020-1541-y
  • Liu A, Cong J, Wang Q, et al. Risk of malnutrition is common in patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: a Cross-sectional Study. J Nutr. 2021;151(6):1591–1596.
  • Wei C, Liu Y, Li Y, Zhang Y, Zhong M, Meng X. Evaluation of the nutritional status in patients with COVID-19. J Clin Biochem Nutr. 2020;67(2):116–121. doi:10.3164/jcbn.20-91
  • Zhou J, Ma Y, Liu Y, et al. A correlation analysis between the nutritional status and prognosis of COVID-19 patients. J Nutr Health Aging. 2021;25(1):84–93. doi:10.1007/s12603-020-1457-6
  • Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate the effect of vitamin D, magnesium, and vitamin B(12) in combination on progression to severe outcomes in older patients with coronavirus (COVID-19). Nutrition. 2020;79–80:111017. doi:10.1016/j.nut.2020.111017
  • Geerse DA, Bindels AJ, Kuiper MA, Roos AN, Spronk PE, Schultz MJ. Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care. 2010;14(4):R147. doi:10.1186/cc9215
  • Rosen GH, Boullata JI, O’Rangers EA, Enow NB, Shin B. Intravenous phosphate repletion regimen for critically ill patients with moderate hypophosphatemia. Crit Care Med. 1995;23(7):1204–1210. doi:10.1097/00003246-199507000-00009
  • Charron T, Bernard F, Skrobik Y, Simoneau N, Gagnon N, Leblanc M. Intravenous phosphate in the intensive care unit: more aggressive repletion regimens for moderate and severe hypophosphatemia. Intensive Care Med. 2003;29(8):1273–1278. doi:10.1007/s00134-003-1872-2
  • Taylor BE, Huey WY, Buchman TG, Boyle WA, Coopersmith CM. Treatment of hypophosphatemia using a protocol based on patient weight and serum phosphorus level in a surgical intensive care unit. J Am Coll Surg. 2004;198(2):198–204. doi:10.1016/j.jamcollsurg.2003.09.013
  • Brown KA, Dickerson RN, Morgan LM, Alexander KH, Minard G, Brown RO. A new graduated dosing regimen for phosphorus replacement in patients receiving nutrition support. J Parenter Enteral Nutr. 2006;30(3):209–214. doi:10.1177/0148607106030003209
  • Kovačević T, Kovačević P, Tomić B, Dragić S, Momčičević D. An alternative approach to treatment of hypophosphatemia in nonsurgical critically ill patients in countries with limited resources. Dose-Response. 2019;17(2):1559325819850421. doi:10.1177/1559325819850421