150
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Identification of Hub Genes Associated with the Pathogenesis of Intracranial Aneurysm via Integrated Bioinformatics Analysis

ORCID Icon, , , , , & show all
Pages 4039-4050 | Published online: 30 Jul 2021

References

  • Signorelli F, Turjman F, Gory B, Labeyrie P, Pelissou-Guyotat I, Riva R. Hemodynamics, inflammation, vascular remodeling, and the development and rupture of intracranial aneurysms: a review. Neuroimmunol Neuroinflammation. 2015;2(2):59. doi:10.4103/2347-8659.154885
  • Signorelli F, Sela S, Gesualdo L, et al. Hemodynamic stress, inflammation, and intracranial aneurysm development and rupture: a systematic review. World Neurosurg. 2018;115:234–244. doi:10.1016/j.wneu.2018.04.143
  • Zhou S, Dion PA, Rouleau GA. Genetics of intracranial aneurysms. Stroke. 2018;49(3):780–787. doi:10.1161/STROKEAHA.117.018152
  • Si H, Yu N, Li Y, Hao Z, Liu Z, Li M-H. NianZu Yu YL, Zheng Hao, Zheng Liu, Li M. A Meta-Analysis of Risk Factors for the Formation of de novo Intracranial Aneurysms. Neurosurgery. 2019;85(4):454–465. doi:10.1093/neuros/nyy332
  • Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–636. doi:10.1016/S1474-4422(11)70109-0
  • Thompson BG, Brown RD, Amin-Hanjani S, et al. Guidelines for the management of patients with unruptured intracranial aneurysms. Stroke. 2015;46(8):2368–2400. doi:10.1161/STR.0000000000000070
  • Toccaceli G, Diana F, Cagnazzo F, et al. Microsurgical clipping compared with new and most advanced endovascular techniques in the treatment of unruptured middle cerebral artery aneurysms: a Meta-Analysis in the modern era. World Neurosurg. 2020;137:451–464.e1. doi:10.1016/j.wneu.2019.12.118
  • Signorelli F, Pop R, Ganau M, et al. Endovascular versus surgical treatment for improvement of oculomotor nerve palsy caused by unruptured posterior communicating artery aneurysms. J Neurointerv Surg. 2020;12(10):964–967. doi:10.1136/neurintsurg-2020-015802
  • Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. Stroke. 2012;43(6):1711–1737. doi:10.1161/STR.0b013e3182587839
  • Brown RDP, Broderick JPP. Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening. Lancet Neurol. 2014;13(4):393–404. doi:10.1016/S1474-4422(14)70015-8
  • Tacconi L, Spinelli R, Signorelli F. Subarachnoid hemorrhage in the eighties: to treat or not to treat. J Neurosurg Sci. 2019. doi:10.23736/S0390-5616.19.04743-X
  • Bo L, Wei B, Wang Z, Li C, Gao Z, Miao Z. Bioinformatic analysis of gene expression profiling of intracranial aneurysm. Mol Med Rep. 2018;17(3):3473–3480. doi:10.3892/mmr.2017.8367
  • Yu L, Fan J, Wang S, et al. Gene expression profiles in intracranial aneurysms. Neurosci Bull. 2014;30(1):99–106. doi:10.1007/s12264-013-1398-8
  • Wei L, Wang Q, Zhang Y, et al. Identification of key genes, transcription factors and microRNAs involved in intracranial aneurysm. Mol Med Rep. 2017;17(1):891–897. doi:10.3892/mmr.2017.7940
  • Liu Y, Song Y, Liu P, et al. Comparative bioinformatics analysis between proteomes of rabbit aneurysm model and human intracranial aneurysm with label‐free quantitative proteomics. CNS Neurosci Ther. 2021;27(1):101–112. doi:10.1111/cns.13570
  • Wang J, Yu L, Zhang D, Wang S, Zhao J. Analysis of gene expression in intracranial aneurysms. Chinese Neurosurgical Journal. 2017;3(1). doi:10.1186/s41016-017-0098-z
  • Shen Y, Dong S, Liu J, et al. Identification of potential biomarkers for thyroid cancer using bioinformatics strategy: a study based on GEO datasets. Biomed Res Int. 2020;2020:1–21. doi:10.1155/2020/9710421
  • Chen D, Kong X, Shen X, et al. Identification of differentially expressed genes and signaling pathways in acute myocardial infarction based on integrated bioinformatics analysis. Cardiovasc Ther. 2019;2019:1–13. doi:10.1155/2019/8490707
  • Kang Q, Li W, Xiao J, et al. Integrated analysis of multiple microarray studies to identify novel gene signatures in preeclampsia. Placenta. 2021;105:104–118. doi:10.1016/jplacenta.2021.01.023
  • Pera J, Korostynski M, Krzyszkowski T, et al. Gene expression profiles in human ruptured and unruptured intracranial aneurysms. Stroke. 2010;41(2):224–231. doi:10.1161/STROKEAHA.109.562009
  • Wang W, Li H, Yu L, et al. Aberrant expression of lncRNAs and mRNAs in patients with intracranial aneurysm. Oncotarget. 2017;8(2):2477–2484. doi:10.18632/oncotarget.13908
  • Li L, Yang X, Jiang F, Dusting GJ, Wu Z. Transcriptome-wide characterization of gene expression associated with unruptured intracranial aneurysms. Eur Neurol. 2009;62(6):330–337. doi:10.1159/000236911
  • Weinsheimer S, Lenk GM, van der Voet M, et al. Integration of expression profiles and genetic mapping data to identify candidate genes in intracranial aneurysm. Physiol Genomics. 2007;32(1):45–57. doi:10.1152/physiolgenomics.00015.2007
  • Kleinloog R, Verweij BH, van der Vlies P, et al. RNA sequencing analysis of intracranial aneurysm walls reveals involvement of lysosomes and immunoglobulins in rupture. Stroke. 2016;47(5):1286–1293. doi:10.1161/STROKEAHA.116.012541
  • Penn DL, Witte SR, Komotar RJ, Sander connolly E. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms. J Clin Neurosci. 2014;21(1):28–32. doi:10.1016/j.jocn.2013.07.004
  • Gareev I, Beylerli O, Aliev G, et al. The role of long Non-Coding RNAs in intracranial aneurysms and subarachnoid hemorrhage. Life. 2020;10(9):155. doi:10.3390/life10090155
  • Schwarze U, Schievink WI, Petty E, et al. Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet. 2001;69(5):989–1001. doi:10.1086/324123
  • Pan Y, Lu J, Yang B, Lenahan C, Zhang J, Shao A. Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in intracranial aneurysm. BMC Neurosci. 2021;22(1):15. doi:10.1186/s12868-021-00622-7
  • Islam S, Watanabe H. Versican: a dynamic regulator of the extracellular matrix. J Histochem Cytochem. 2020;68(11):763–775. doi:10.1369/0022155420953922
  • Wight TN, Kang I, Evanko SP, et al. Versican—a critical extracellular matrix regulator of immunity and inflammation. Front Immunol. 2020;11:512. doi:10.3389/fimmu.2020.00512
  • Du WW, Yang W, Yee AJ. Roles of versican in cancer biology–tumorigenesis, progression and metastasis. Histol Histopathol. 2013;28(6):701. doi:10.14670/HH-28.701
  • Keire PA, Bressler SL, Mulvihill ER, Starcher BC, Kang I, Wight TN. Inhibition of versican expression by siRNA facilitates tropoelastin synthesis and elastic fiber formation by human SK-LMS-1 leiomyosarcoma smooth muscle cells in vitro and in vivo. Matrix Biol. 2016;50:67–81. doi:10.1016/j.matbio.2015.12.010
  • Ricciardelli C, Sakko AJ, Ween MP, Russell DL, Horsfall DJ. The biological role and regulation of versican levels in cancer. Cancer Metast Rev. 2009;28(1–2):233–245. doi:10.1007/s10555-009-9182-y
  • Dos Reis DC, Damasceno KA, de Campos CB, et al. Versican and Tumor-Associated macrophages promotes tumor progression and metastasis in canine and murine models of breast carcinoma. Front Oncol. 2019;9:577. doi:10.3389/fonc.2019.00577
  • Kodama J, Kusumoto T. Prognostic significance of stromal versican expression in human endometrial cancer. Ann Oncol. 2007;18(2):269–274. doi:10.1093/annonc/mdl370
  • Labropoulou VT, Theocharis AD, Ravazoula P, et al. Versican but not decorin accumulation is related to metastatic potential and neovascularization in testicular germ cell tumours. Histopathology. 2006;49(6):582–593. doi:10.1111/j.1365-2559.2006.02558.x
  • Zhang Q, Wu J, Chen X, Zhao M, Zhang D, Gao F. Upregulation of versican associated with tumor progression, metastasis, and poor prognosis in bladder carcinoma. Biomed Res Int. 2021;2021:1–11. doi:10.1155/2021/6949864
  • Shen X, Lin W, Xu M, et al. Prognostic significance of Versican expression in gastric adenocarcinoma. Oncogenesis. 2015;4(11):e178–e178. doi:10.1038/oncsis.2015.36
  • Wang ZI, Li Z, Wang Y, et al. Versican silencing improves the antitumor efficacy of endostatin by alleviating its induced inflammatory and immunosuppressive changes in the tumor microenvironment. Oncol Rep. 2015;33(6):2981–2991. doi:10.3892/or.2015.3903
  • Rahmani M, Wong BW, Ang L, et al. Versican: signaling to transcriptional control pathways. Can J Physiol Pharm. 2006;84(1):77–92. doi:10.1139/y05-154
  • Wight TN, Merrilees MJ. Proteoglycans in atherosclerosis and restenosis. Circ Res. 2004;94(9):1158–1167. doi:10.1161/01.RES.0000126921.29919.51
  • Sathyan S, Koshy LV, Balan S, et al. Association of Versican (VCAN) gene polymorphisms rs251124 and rs2287926 (G428D), with intracranial aneurysm. Meta Gene. 2014;2:651–660. doi:10.1016/j.mgene.2014.07.001
  • Conway SJ, Izuhara K, Kudo Y, et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci. 2014;71(7):1279–1288. doi:10.1007/s00018-013-1494-y
  • Kudo A, Kii I. Periostin function in communication with extracellular matrices. J Cell Commun Signal. 2018;12(1):301–308. doi:10.1007/s12079-017-0422-6
  • Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K-dependent proteins: growth arrest-specific protein 6, Gla-rich protein and periostin (Review). Int J Mol Med. 2021;47(3):1. doi:10.3892/ijmm.2020.4835
  • Idolazzi L, Ridolo E, Fassio A, et al. Periostin: the bone and beyond. Eur J Intern Med. 2017;38:12–16. doi:10.1016/j.ejim.2016.11.015
  • Ma H, Wang J, Zhao X, et al. Periostin promotes colorectal tumorigenesis through Integrin-FAK-Src Pathway-Mediated YAP/TAZ activation. Cell Rep. 2020;30(3):793–806.e6. doi:10.1016/j.celrep.2019.12.075
  • Kim D, Jeong JY, Han M, et al. Periostin is a novel histological biomarker for the diagnosis of chondroid tumor. Transl Cancer Res. 2021;10(1):434–444. doi:10.21037/tcr-20-2499
  • Dwyer O, Moore BB. The role of periostin in lung fibrosis and airway remodeling. Cell Mol Life Sci. 2017;74(23):4305–4314. doi:10.1007/s00018-017-2649-z
  • Liu C, Feng X, Wang B, et al. Bone marrow mesenchymal stem cells promote head and neck cancer progression through Periostin-mediated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin. Cancer Sci. 2018;109(3):688–698. doi:10.1111/cas.13479
  • Luo W, Wang H, Hu J. Increased concentration of serum periostin is associated with poor outcome of patients with aneurysmal subarachnoid hemorrhage. J Clin Lab Anal. 2018;32(5):e22389. doi:10.1002/jcla.22389
  • Chu L, Wang F, Zhang W, Li H, Xu J, Tong X. Periostin secreted by Carcinoma-Associated fibroblasts promotes ovarian cancer cell platinum resistance through the PI3K/Akt signaling pathway. Technol Cancer Res T. 2020;19:153303382097753. doi:10.1177/1533033820977535
  • Didangelos A, Yin X, Mandal K, et al. Extracellular matrix composition and remodeling in human abdominal aortic aneurysms: a proteomics approach. Mol Cell Proteomics. 2011;10(8):M111.008128. doi:10.1074/mcp.M111.008128
  • Yamashita O, Yoshimura K, Nagasawa A, et al. Periostin links mechanical strain to inflammation in abdominal aortic aneurysm. PLoS One. 2013;8(11):e79753. doi:10.1371/journal.pone.0079753
  • Plana E, Gálvez L, Medina P, et al. Identification of novel microRNA profiles dysregulated in plasma and tissue of abdominal aortic aneurysm patients. Int J Mol Sci. 2020;21(13):4600. doi:10.3390/ijms21134600
  • Qi L, Wu K, Shi S, Ji Q, Miao H, Bin Q. Thrombospondin-2 is upregulated in patients with aortic dissection and enhances angiotensin II-induced smooth muscle cell apoptosis. Exp Ther Med. 2020;20(6):150. doi:10.3892/etm.2020.9279
  • Rusnati M, Borsotti P, Moroni E, et al. The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis. 2019;22(1):133–144. doi:10.1007/s10456-018-9644-3
  • Morris AH, Stamer DK, Kunkemoeller B, Chang J, Xing H, Kyriakides TR. Decellularized materials derived from TSP2-KO mice promote enhanced neovascularization and integration in diabetic wounds. Biomaterials. 2018;169:61–71. doi:10.1016/j.biomaterials.2018.03.049
  • Helkin A, Maier KG, Gahtan V. Thrombospondin-1, −2 and −5 have differential effects on vascular smooth muscle cell physiology. Biochem Biophys Res Commun. 2015;464(4):1022–1027. doi:10.1016/j.bbrc.2015.07.044
  • Kato K, Oguri M, Kato N, et al. Assessment of genetic risk factors for thoracic aortic aneurysm in hypertensive patients. Am J Hypertens. 2008;21(9):1023–1027. doi:10.1038/ajh.2008.229
  • Golledge J, Clancy P, Hankey GJ, Norman PE. Relation between serum thrombospondin-2 and cardiovascular mortality in older men screened for abdominal aortic aneurysm. Am J Cardiol. 2013;111(12):1800–1804. doi:10.1016/j.amjcard.2013.02.038
  • Mayosi BM, Fish M, Shaboodien G, et al. Identification of Cadherin 2 (CDH2) Mutations in Arrhythmogenic Right Ventricular Cardiomyopathy. Circ Cardiovasc Genet. 2017;10(2). doi:10.1161/CIRCGENETICS.116.001605
  • Lyon CA, Williams H, Bianco R, et al. Aneurysm severity is increased by combined mmp-7 deletion and n-cadherin mimetic (EC4-Fc) Over-Expression. Sci Rep-Uk. 2017;7(1). doi:10.1038/s41598-017-17700-8
  • Sulkava M, Raitoharju E, Mennander A, et al. Differentially expressed genes and canonical pathways in the ascending thoracic aortic aneurysm–the Tampere Vascular Study. Sci Rep-Uk. 2017;7(1). doi:10.1038/s41598-017-12421-4
  • Takase H, Chou SH, Hamanaka G, et al. Soluble vascular endothelial-cadherin in CSF after subarachnoid hemorrhage. Neurology. 2020;94(12):e1281–e1293. doi:10.1212/WNL.0000000000008868