151
Views
4
CrossRef citations to date
0
Altmetric
Original Research

A New Accurate, Simple and Less Radiation Exposure Device for Distal Locking of Femoral Intramedullary Nails

ORCID Icon, , ORCID Icon &
Pages 4145-4153 | Published online: 04 Aug 2021

References

  • Zhang YZ. [Current status and prospect of traumatic orthopedics treatment]. Zhonghua Wai Ke Za Zhi. 2019;57(1):19–22. Chinese.
  • Krettek C, Mannss J, Miclau T, et al. Deformation of femoral nails with intramedullary insertion. J Orthop Res. 1998;16(5):572–575. doi:10.1002/jor.1100160508
  • Chan DS, Burris RB, Erdogan M, et al. The insertion of intramedullary nail locking screws without fluoroscopy: a faster and safer technique. J Orthop Trauma. 2013;27(7):363–366. doi:10.1097/BOT.0b013e3182828e10
  • Han B, Shi Z, Fu Y, et al. Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of femoral intramedullary nails. Medicine (Baltimore). 2017;96(29):e7450. doi:10.1097/MD.0000000000007450
  • Cartiaux O, Paul L, Docquier PL, et al. Computer-assisted and robot-assisted technologies to improve bone-cutting accuracy when integrated with a freehand process using an oscillating saw. J Bone Joint Surg Am. 2010;92(11):2076–2082. doi:10.2106/JBJS.I.00457
  • Hill D, Williamson T, Lai CY, et al. Robots and tools for remodeling bone. IEEE Rev Biomed Eng. 2020;13:184–198. doi:10.1109/RBME.2019.2949749
  • Whatling GM, Nokes LD. Literature review of current techniques for the insertion of distal screws into intramedullary locking nails. Injury. 2006;37(2):109–119. doi:10.1016/j.injury.2005.09.009
  • Trotschel H. [CT-guided interventions on the spine--new laser navigation system]. Rofo. 2014;186(1):9. German.
  • Lilly RJ, Koueiter DM, Graner KC, et al. Computer-assisted navigation for intramedullary nail fixation of intertrochanteric femur fractures: a randomized, controlled trial. Injury. 2018;49(2):345–350. doi:10.1016/j.injury.2017.12.006
  • Wang Y, Han B, Shi Z, et al. Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of tibia intramedullary nails. Medicine (Baltimore). 2018;97(27):e11305. doi:10.1097/MD.0000000000011305
  • Zuo K, Qin W, Guo Q, et al. [Electromagnetic navigation interlocking intramedullary nail technology for treatment of femoral shaft fractures]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2014;28(10):1204–1207. Chinese.
  • Persiani P, Gurzi M, Moreschini O, et al. Fluoroscopic freehand and electromagnetic-guided targeting system for distal locking screws of humeral intramedullary nail. Musculoskelet Surg. 2017;101(1):19–23. doi:10.1007/s12306-016-0436-x
  • Leloup T, El KW, Schuind F, et al. A novel technique for distal locking of intramedullary nail based on two non-constrained fluoroscopic images and navigation. IEEE Trans Med Imaging. 2008;27(9):1202–1212. doi:10.1109/TMI.2008.920602
  • Wattanakitkrileart S, Tangtrakulwanich B, Yuenyongviwat V. Comparing results between new aiming device and freehand technique for distal locking of intramedullary implants. J Med Assoc Thai. 2016;99(11):1180–1184.
  • Krettek C, Konemann B, Farouk O, et al. Experimental study of distal interlocking of a solid tibial nail: radiation-independent distal aiming device (DAD) versus freehand technique (FHT). J Orthop Trauma. 1998;12(6):373–378. doi:10.1097/00005131-199808000-00001
  • Marx RG, Grimm P, Lillemoe KA, et al. Reliability of lower extremity alignment measurement using radiographs and PACS. Knee Surg Sports Traumatol Arthrosc. 2011;19(10):1693–1698. doi:10.1007/s00167-011-1467-3
  • Zhu Y, Phillips R, Griffiths JG, et al. Recovery of distal hole axis in intramedullary nail trajectory planning. Proc Inst Mech Eng H. 2002;216(5):323–332. doi:10.1243/09544110260216595
  • Gao H, Zhang R, Jia C, et al. Novel placement of cortical bone trajectory screws in the lumbar spine: a radiographic and cadaveric study. Clin Spine Surg. 2018;31(6):E329–E336. doi:10.1097/BSD.0000000000000651
  • Jeong ST, Park YS, Jung GH. Computational simulation of sacral-alar-iliac (S2AI) screw fixation of pelvis and implications for fluoroscopic procedure: a cadaver study. J Orthop Surg (Hong Kong). 2019;27(1):615496534. doi:10.1177/2309499019836246
  • Anderson BD, Nordquist P, Skarman E, et al. Integrated lower extremity trauma simulator. Stud Health Technol Inform. 2007;125:19–24.
  • Vaughan N, Dubey VN, Wainwright TW, et al. A review of virtual reality based training simulators for orthopaedic surgery. Med Eng Phys. 2016;38(2):59–71. doi:10.1016/j.medengphy.2015.11.021
  • Krettek C, Konemann B, Miclau T, et al. A mechanical distal aiming device for distal locking in femoral nails. Clin Orthop Relat Res. 1999;364:267–275. doi:10.1097/00003086-199907000-00033
  • Chu W, Wang J, Young ST, et al. Reducing radiation exposure in intra-medullary nailing procedures: intra-medullary endo-transilluminating (iMET). Injury. 2009;40(10):1084–1087. doi:10.1016/j.injury.2009.04.008
  • Goulet JA, Londy F, Saltzman CL, et al. Interlocking intramedullary nails. An improved method of screw placement combining image intensification and laser light. Clin Orthop Relat Res. 1992;281:199–203.
  • Karachalios T, Babis G, Tsarouchas J, et al. The clinical performance of a small diameter tibial nailing system with a mechanical distal aiming device. Injury. 2000;31(6):451–459. doi:10.1016/S0020-1383(00)00024-3
  • Zhao X, Fan Y, Chen J. A comparison of free-hand method and electromagnetic navigation technique for the distal locking during intramedullary nailing procedures: a meta-analysis. Arch Orthop Trauma Surg. 2021;141(1):45–53. doi:10.1007/s00402-020-03456-w
  • Kaito T, Matsukawa K, Abe Y, et al. Cortical pedicle screw placement in lumbar spinal surgery with a patient-matched targeting guide: a cadaveric study. J Orthop Sci. 2018;23(6):865–869. doi:10.1016/j.jos.2018.06.005
  • Sorin G, Pasquier G, Drumez E, et al. Reproducibility of digital measurements of lower-limb deformity on plain radiographs and agreement with CT measurements. Orthop Traumatol Surg Res. 2016;102(4):423–428. doi:10.1016/j.otsr.2016.02.009
  • Muller LP, Suffner J, Wenda K, et al. Radiation exposure to the hands and the thyroid of the surgeon during intramedullary nailing. Injury. 1998;29(6):461–468. doi:10.1016/S0020-1383(98)00088-6
  • Park SM, Shen F, Kim HJ, et al. How many screws are necessary to be considered an experienced surgeon for freehand placement of thoracolumbar pedicle screws? Analysis using the cumulative summation test for learning curve. World Neurosurg. 2018;118:e550–e556. doi:10.1016/j.wneu.2018.06.236
  • Pardiwala D, Prabhu V, Dudhniwala G, et al. The AO distal locking aiming device: an evaluation of efficacy and learning curve. Injury. 2001;32(9):713–718. doi:10.1016/S0020-1383(01)00100-0
  • Choi J, Kim J, Hwang JY, et al. A novel smart navigation system for intramedullary nailing in orthopedic surgery. PLoS One. 2017;12(4):e174407.
  • Goodall JD. An image intensifier laser guidance system for the distal locking of an intramedullary nail. Injury. 1991;22(4):339. doi:10.1016/0020-1383(91)90026-B
  • Smalley PJ. Laser safety: risks, hazards, and control measures. Laser Ther. 2011;20(2):95–106. doi:10.5978/islsm.20.95