85
Views
0
CrossRef citations to date
0
Altmetric
Original Research

The Identification of Alternative Polyadenylation in Stomach Adenocarcinomas Using the Genotype-Tissue Expression Project and the Cancer Genome Atlas– Stomach Adenocarcinoma Profiles

, , &
Pages 6035-6045 | Published online: 23 Sep 2021

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi:10.3322/caac.21492
  • Kono T, Imai Y, Ichihara T, et al. Adenocarcinoma arising in gastric inverted hyperplastic polyp: a case report and review of the literature. Pathol Res Pract. 2007;203:53–56. doi:10.1016/j.prp.2006.08.010
  • Zhu Y-H, Jeong S, Wu M, et al. Dietary intake of fatty acids, total cholesterol, and stomach cancer in a Chinese population. Nutrients. 2019;11:1730. doi:10.3390/nu11081730
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34. doi:10.3322/caac.21551
  • Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000-14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet (London, England). 2018;391:1023–1075.
  • Tian B, Manley JL. Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol. 2017;18:18–30. doi:10.1038/nrm.2016.116
  • Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell. 2011;43:853–866. doi:10.1016/j.molcel.2011.08.017
  • Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet. 2013;14:496–506. doi:10.1038/nrg3482
  • Mayr C. Evolution and biological roles of alternative 3ʹUTRs. Trends Cell Biol. 2016;26:227–237. doi:10.1016/j.tcb.2015.10.012
  • Mayr C. What are 3ʹ UTRs doing? Cold Spring Harb Perspect Biol. 2019;11:10.
  • Wang L, Chen M, Fu H, Ni T, Wei G. Tempo-spatial alternative polyadenylation analysis reveals that 3′ UTR lengthening of Mdm2 regulates p53 expression and cellular senescence in aged rat testis. Biochem Biophys Res Commun. 2020;523:1046–1052. doi:10.1016/j.bbrc.2020.01.061
  • Lackford B, Yao C, Charles GM, et al. Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J. 2014;33:878–889. doi:10.1002/embj.201386537
  • Brumbaugh J, Di Stefano B, Wang X, et al. Nudt21 controls cell fate by connecting alternative polyadenylation to chromatin signaling. Cell. 2018;172:106–120.e121. doi:10.1016/j.cell.2017.11.023
  • Chen M, Lyu G, Han M, et al. 3ʹ UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Res. 2018;28:285–294. doi:10.1101/gr.224451.117
  • Chen X, Zhang JX, Luo JH, et al. CSTF2-induced shortening of the RAC1 3ʹUTR promotes the pathogenesis of urothelial carcinoma of the bladder. Cancer Res. 2018;78:5848–5862.
  • Miles WO, Lembo A, Volorio A, et al. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation. Cancer Res. 2016;76:7231–7241. doi:10.1158/0008-5472.CAN-16-0844
  • Venkat S, Tisdale AA, Schwarz JR, et al. Alternative polyadenylation drives oncogenic gene expression in pancreatic ductal adenocarcinoma. Genome Res. 2020;30:347–360. doi:10.1101/gr.257550.119
  • Xia Z, Donehower LA, Cooper TA, et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3ʹ-UTR landscape across seven tumour types. Nat Commun. 2014;5:5274. doi:10.1038/ncomms6274
  • Feng X, Li L, Wagner EJ, Li W. TC3A: the Cancer 3′ UTR Atlas. Nucleic Acids Res. 2017;46:D1027–D1030. doi:10.1093/nar/gkx892
  • Li L, Wang D, Xue M, Mi X, Liang Y, Wang P. 3′UTR shortening identifies high-risk cancers with targeted dysregulation of the ceRNA network. Sci Rep. 2014;4:5406. doi:10.1038/srep05406
  • Masamha CP, Xia Z, Yang J, et al. CFIm25 links alternative polyadenylation to glioblastoma tumour suppression. Nature. 2014;510:412–416. doi:10.1038/nature13261
  • Chang K, Creighton CJ, Davis C, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–1120. doi:10.1038/ng.2764
  • GTEx. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–660. doi:10.1126/science.1262110
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi:10.1089/omi.2011.0118
  • Andersen PK, Gill RD. Cox’s regression model for counting processes: a large sample study. Annals Stat. 1982;1100–1120. doi:10.1214/aos/1176345976
  • Xiang Y, Ye Y, Lou Y, et al. Comprehensive Characterization of Alternative Polyadenylation in Human Cancer. J Natl Cancer Inst. 2018;110:379–389. doi:10.1093/jnci/djx223
  • Haga RB, Ridley AJ. Rho GTPases: regulation and roles in cancer cell biology. Small GTPases. 2016;7:207–221. doi:10.1080/21541248.2016.1232583
  • Hanna S, El-Sibai M. Signaling networks of Rho GTPases in cell motility. Cell Signal. 2013;25:1955–1961. doi:10.1016/j.cellsig.2013.04.009
  • Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature. 2002;420:629–635. doi:10.1038/nature01148
  • Lin Y, Zheng Y. Approaches of targeting Rho GTPases in cancer drug discovery. Expert Opin Drug Discov. 2015;10:991–1010. doi:10.1517/17460441.2015.1058775
  • Nam S, Kim JH, Lee DH. RHOA in Gastric Cancer: functional Roles and Therapeutic Potential. Front Genet. 2019;10:438. doi:10.3389/fgene.2019.00438
  • Wessler S, Gimona M, Rieder G. Regulation of the actin cytoskeleton in Helicobacter pylori-induced migration and invasive growth of gastric epithelial cells. Cell Commun Signaling. 2011;9:27. doi:10.1186/1478-811X-9-27
  • Chiou CC, Chan CC, Sheu DL, Chen KT. Helicobacter pylori infection induced alteration of gene expression in human gastric cells. Gut. 2001;48:598–604. doi:10.1136/gut.48.5.598
  • Tao J, Wu D, Xu B, et al. microRNA-133 inhibits cell proliferation, migration and invasion in prostate cancer cells by targeting the epidermal growth factor receptor. Oncol Rep. 2012;27:1967–1975.
  • Zhang X-T, Zhang Z, Xin Y-N, Ma X-Z, Xuan S-Y. Impairment of growth of gastric carcinoma by miR-133-mediated Her-2 inhibition. Tumor Biol. 2015;36:8925–8930. doi:10.1007/s13277-015-3637-2
  • Zhou Y, Wu D, Tao J, Qu P, Zhou Z, Hou J. MicroRNA-133 inhibits cell proliferation, migration and invasion by targeting epidermal growth factor receptor and its downstream effector proteins in bladder cancer. Scand J Urol. 2013;47:423–432. doi:10.3109/00365599.2012.748821
  • Guo L, Huang W, Chen B, et al. gga-mir-133a-3p Regulates Myoblasts Proliferation and Differentiation by Targeting PRRX1. Front Genet. 2018;9:577. doi:10.3389/fgene.2018.00577
  • Zhang X, Li Z, Xuan Z, et al. Novel role of miR-133a-3p in repressing gastric cancer growth and metastasis via blocking autophagy-mediated glutaminolysis. J Exp Clin Cancer Res. 2018;37:320. doi:10.1186/s13046-018-0993-y
  • Cheng Z, Liu F, Wang G, Li Y, Zhang H, Li F. miR-133 is a key negative regulator of CDC42-PAK pathway in gastric cancer. Cell Signal. 2014;26:2667–2673. doi:10.1016/j.cellsig.2014.08.012
  • Hinohara K, Polyak K. Intratumoral Heterogeneity: more Than Just Mutations. Trends Cell Biol. 2019;29:569–579. doi:10.1016/j.tcb.2019.03.003
  • Xiong W, Deng Z, Tang Y, Deng Z, Li M. Downregulation of KMT2D suppresses proliferation and induces apoptosis of gastric cancer. Biochem Biophys Res Commun. 2018;504:129–136. doi:10.1016/j.bbrc.2018.08.143
  • Liang M, Shi B, Liu J, et al. Downregulation of miR203 induces overexpression of PIK3CA and predicts poor prognosis of gastric cancer patients. Drug Des Devel Ther. 2015;9:3607–3616.
  • Yaffe MB. Why geneticists stole cancer research even though cancer is primarily a signaling disease. Sci Signal. 2019;12:eaaw3483. doi:10.1126/scisignal.aaw3483
  • Yuan F, Hankey W, Wagner EJ. Alternative polyadenylation of mRNA and its role in cancer. Genes Dis. 2019;1–12. doi:10.1016/j.gendis.2019.10.011
  • Xue Z, Warren RL, Gibb EA, et al. Recurrent tumor-specific regulation of alternative polyadenylation of cancer-related genes. BMC Genom. 2018;19:536. doi:10.1186/s12864-018-4903-7
  • Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15:81–94. doi:10.1038/nrclinonc.2017.166
  • Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–337. doi:10.1038/nature12624
  • Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108:479–485. doi:10.1038/bjc.2012.581
  • Cassidy JW, Bruna A. Chapter 4 - Tumor Heterogeneity. In: Uthamanthil R, Tinkey P, editors. Patient Derived Tumor Xenograft Models. Academic Press; 2017:37–55.
  • Mellman I, Yarden Y. Endocytosis and cancer. Cold Spring Harb Perspect Biol. 2013;5:a016949. doi:10.1101/cshperspect.a016949
  • Lanzetti L, Di Fiore PP. Behind the Scenes: endo/Exocytosis in the Acquisition of Metastatic Traits. Cancer Res. 2017;77:1813–1817. doi:10.1158/0008-5472.CAN-16-3403
  • Lee S-H, Singh I, Tisdale S, Abdel-Wahab O. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature. 2018;561:127–131. doi:10.1038/s41586-018-0465-8
  • Singh P, Alley TL, Wright SM, et al. Global Changes in Processing of mRNA 3′ Untranslated Regions Characterize Clinically Distinct Cancer Subtypes. Cancer Res. 2009;69:9422. doi:10.1158/0008-5472.CAN-09-2236
  • Mao Z, Zhao H, Qin Y, et al. Post-Transcriptional Dysregulation of microRNA and Alternative Polyadenylation in Colorectal Cancer. Front Genet. 2020;11:64. doi:10.3389/fgene.2020.00064