123
Views
3
CrossRef citations to date
0
Altmetric
Original Research

A Potential Three-Gene-Based Diagnostic Signature for Hypertension in Pregnancy

, & ORCID Icon
Pages 6847-6856 | Published online: 15 Oct 2021

References

  • Vest AR, Cho LS. Hypertension in pregnancy. Curr Atheroscler Rep. 2014;16(3):395. doi:10.1007/s11883-013-0395-8
  • Kintiraki E, Papakatsika S, Kotronis G, Goulis DG, Kotsis V. Pregnancy-induced hypertension. Hormones (Athens). 2015;14(2):211–223. doi:10.14310/horm.2002.1582
  • Fauvel JP. [Hypertension during pregnancy: epidemiology, definition]. Presse Med. 2016;45(7–8 Pt 1):618–621. French. doi:10.1016/j.lpm.2016.05.015
  • Hopkins M. Report of the national high blood pressure education program working group on high blood pressure in pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22. doi:10.1016/S0002-9378(00)99785-0
  • Brown CM, Garovic VD. Drug treatment of hypertension in pregnancy. Drugs. 2014;74(3):283–296. doi:10.1007/s40265-014-0187-7
  • Iino K, Higuchi T, Ogawa M, et al. Blood pressure during pregnancy is a useful predictive marker for hypertension and dyslipidemia later in life, a population-based, cross-sectional study. Maturitas. 2016;87:84–88. doi:10.1016/j.maturitas.2016.02.012
  • Sun CJ, Zhang L, Zhang WY. Gene expression profiling of maternal blood in early onset severe preeclampsia: identification of novel biomarkers. J Perinat Med. 2009;37(6):609–616. doi:10.1515/JPM.2009.103
  • Yuen RK, Penaherrera MS, von Dadelszen P, McFadden DE, Robinson WP. DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet. 2010;18(9):1006–1012. doi:10.1038/ejhg.2010.63
  • Zhang Z, Wang P, Zhang L, et al. Identification of key genes and long noncoding RNA-associated competing endogenous RNA (ceRNA) networks in early-onset preeclampsia. Biomed Res Int. 2020;2020:1673486.
  • Velicky P, Windsperger K, Petroczi K, et al. Pregnancy-associated diamine oxidase originates from extravillous trophoblasts and is decreased in early-onset preeclampsia. Sci Rep. 2018;8(1):6342. doi:10.1038/s41598-018-24652-0
  • Chaiworapongsa T, Romero R, Whitten A, et al. Differences and similarities in the transcriptional profile of peripheral whole blood in early and late-onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsiaa. J Perinat Med. 2013;41(5):485–504. doi:10.1515/jpm-2013-0082
  • Pan X, Wei B, Wang H, Ma L, Du Z, Chen Y. Novel association between FOXO3 rs2232365 polymorphism and late-onset preeclampsia: a case-control candidate genetic study. BMC Pregnancy Childbirth. 2020;20(1):779. doi:10.1186/s12884-020-03479-6
  • Zhu L, Lv R, Kong L, Cheng H, Lan F, Li X. Genome-wide mapping of 5mC and 5hmC identified differentially modified genomic regions in late-onset severe preeclampsia: a pilot study. PLoS One. 2015;10(7):e0134119. doi:10.1371/journal.pone.0134119
  • Kim S, Heath E, Heilbrun L. Sample size determination for logistic regression on a logit-normal distribution. Stat Methods Med Res. 2017;26(3):1237–1247. doi:10.1177/0962280215572407
  • Garcia TP, Marder K, Wang Y. Statistical modeling of Huntington disease onset. Handb Clin Neurol. 2017;144:47–61.
  • Bonte C, Vercauteren F. Privacy-preserving logistic regression training. BMC Med Genomics. 2018;11(Suppl 4):86. doi:10.1186/s12920-018-0398-y
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment analysis. bioRxiv. 2019;1:060012.
  • Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi:10.1089/omi.2011.0118
  • Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi:10.1038/nmeth.3337
  • Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–D613. doi:10.1093/nar/gky1131
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303
  • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22. doi:10.18637/jss.v033.i01
  • Reustle A, Torzewski M. Role of p38 MAPK in atherosclerosis and aortic valve sclerosis. Int J Mol Sci. 2018;19:12. doi:10.3390/ijms19123761
  • Dehne N, Brune B. HIF-1 in the inflammatory microenvironment. Exp Cell Res. 2009;315(11):1791–1797. doi:10.1016/j.yexcr.2009.03.019
  • Shah NM, Imami N, Johnson MR. Progesterone modulation of pregnancy-related immune responses. Front Immunol. 2018;9:1293. doi:10.3389/fimmu.2018.01293
  • Lin X, Wang R, Zhang J, et al. Insights into human astrocyte response to H5N1 infection by microarray analysis. Viruses. 2015;7(5):2618–2640. doi:10.3390/v7052618
  • Pinheiro TV, Brunetto S, Ramos JG, Bernardi JR, Goldani MZ. Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Orig Health Dis. 2016;7(4):391–407. doi:10.1017/S2040174416000209
  • Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–644.
  • Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–644.
  • Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Role of the monocyte-macrophage system in normal pregnancy and preeclampsia. Int J Mol Sci. 2019;20:15. doi:10.3390/ijms20153695
  • Ito M, Nishizawa H, Tsutsumi M, et al. Potential role for nectin-4 in the pathogenesis of pre-eclampsia: a molecular genetic study. BMC Med Genet. 2018;19(1):166. doi:10.1186/s12881-018-0681-y
  • Vinnars MT, Bjork E, Nagaev I, et al. Enhanced Th1 and inflammatory mRNA responses upregulate NK cell cytotoxicity and NKG2D ligand expression in human pre-eclamptic placenta and target it for NK cell attack. Am J Reprod Immunol. 2018;80(1):e12969. doi:10.1111/aji.12969
  • Chen J, Zhao L, Wang D, et al. Contribution of regulatory T cells to immune tolerance and association of microRNA210 and Foxp3 in preeclampsia. Mol Med Rep. 2019;19(2):1150–1158.
  • Chatterjee P, Chiasson VL, Seerangan G, et al. Cotreatment with interleukin 4 and interleukin 10 modulates immune cells and prevents hypertension in pregnant mice. Am J Hypertens. 2015;28(1):135–142. doi:10.1093/ajh/hpu100
  • Vella D, Marini S, Vitali F, Di Silvestre D, Mauri G, Bellazzi R. MTGO: PPI network analysis via topological and functional module identification. Sci Rep. 2018;8(1):5499. doi:10.1038/s41598-018-23672-0
  • Shin MK, Eraso CC, Mu YP, et al. Leptin induces hypertension acting on transient receptor potential melastatin 7 channel in the carotid body. Circ Res. 2019;125(11):989–1002. doi:10.1161/CIRCRESAHA.119.315338
  • Hogg K, Blair JD, von Dadelszen P, Robinson WP. Hypomethylation of the LEP gene in placenta and elevated maternal leptin concentration in early onset pre-eclampsia. Mol Cell Endocrinol. 2013;367(1–2):64–73. doi:10.1016/j.mce.2012.12.018
  • Kalinderis M, Papanikolaou A, Kalinderi K, Vyzantiadis TA, Ioakimidou A, Tarlatzis BC. Serum levels of leptin and IP-10 in preeclampsia compared to controls. Arch Gynecol Obstet. 2015;292(2):343–347. doi:10.1007/s00404-015-3659-4
  • Neidhart M. DNA Methylation in Pituitary Diseases - ScienceDirect. In: DNA Methylation and Complex Human Disease; 2016:215–228.
  • Chang AS, Grant R, Tomita H, Kim HS, Smithies O, Kakoki M. Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 2016;113(44):12538–12543. doi:10.1073/pnas.1615051113
  • Leanos-Miranda A, Marquez-Acosta J, Cardenas-Mondragon GM, et al. Urinary prolactin as a reliable marker for preeclampsia its severity, and the occurrence of adverse pregnancy outcomes. J Clin Endocrinol Metab. 2008;93(7):2492–2499.
  • Gonzalez C, Parra A, Ramirez-Peredo J, et al. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. Lab Invest. 2007;87(10):1009–1017. doi:10.1038/labinvest.3700662
  • Nakajima R, Ishida M, Kamiya CA, et al. Elevated vasoinhibin derived from prolactin and cathepsin D activities in sera of patients with preeclampsia. Hypertens Res. 2015;38(12):899–901. doi:10.1038/hr.2015.99
  • Fang Z, Yang S, Zhu L, et al. Association study of IGFBP1 and IGFBP3 polymorphisms with hypertension and cardio-cerebral vascular diseases in a Chinese Han population. Oncotarget. 2017;8(44):77836–77845. doi:10.18632/oncotarget.20839
  • Inan S, Vatansever S, Kuscu NK, Lacin S, Ozbilgin K, Koyuncu F. Immunohistochemical staining of IGF-I, IGF-binding proteins-1 and −3, and transforming growth factor beta-3 in the umbilical cords of preeclamptic patients. Acta Obstet Gynecol Scand. 2002;81(8):772–780. doi:10.1034/j.1600-0412.2002.810815.x
  • Wang HS, Lee JD, Cheng BJ, Soong YK. Insulin-like growth factor-binding protein 1 and insulin-like growth factor-binding protein 3 in pre-eclampsia. Br J Obstet Gynaecol. 1996;103(7):654–659. doi:10.1111/j.1471-0528.1996.tb09833.x