163
Views
4
CrossRef citations to date
0
Altmetric
Original Research

Whole Exome Sequencing Study in a Family with Type 2 Diabetes Mellitus

, , , ORCID Icon, , , , ORCID Icon, & show all
Pages 8217-8229 | Published online: 16 Nov 2021

References

  • Cho NH, Shaw JE, Karuranga S, et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138(1):271–281. doi:10.1016/j.diabres.2018.02.023
  • Albai O, Frandes M, Timar B, Paun DL, Roman D, Rimar R. Long-term risk of malignant neoplastic disorders in type 2 diabetes mellitus patients with metabolic syndrome. Diabetes Metab Syndr Obes. 2020;13(1):1317–1326. doi:10.2147/DMSO.S243263
  • Peleg O, Hadar E, Cohen A. Individuals with type 2 diabetes: an exploratory study of their experience of family relationships and coping with the illness. Diabetes Educ. 2020;46(1):83–93.
  • Arfa I, Abid A, Malouche D, et al. Familial aggregation and excess maternal transmission of type 2 diabetes in Tunisia. Postgrad Med J. 2007;83(979):348–351. doi:10.1136/pgmj.2006.053744
  • Wemrell M, Bennet L, Merlo J. Understanding the complexity of socioeconomic disparities in type 2 diabetes risk: a study of 4.3 million people in Sweden. BMJ Open Diabetes Res Care. 2019;7(1):e000749. doi:10.1136/bmjdrc-2019-000749
  • Souliotis K, Koutsovasilis A, Vatheia G, et al. Profile and factors associated with glycaemic control of patients with type 2 diabetes in Greece: results from the diabetes registry. BMC Endocr Disord. 2020;20(1):16. doi:10.1186/s12902-020-0496-7
  • Cui X, Qian DW, Jiang S, Shang EX, Zhu ZH, Duan JA. Scutellariae radix and coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci. 2018;19(11):3634. doi:10.3390/ijms19113634
  • Kral BG, Becker DM, Yanek LR, et al. The relationship of family history and risk of type 2 diabetes differs by ancestry. Diabetes Metab. 2019;45(3):261–267.
  • Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48(3):e220.
  • Sarhangi N, Sharifi F, Hashemian L, et al. PPARG (Pro12Ala) genetic variant and risk of T2DM: a systematic review and meta-analysis. Sci Rep. 2020;10(1):12764. doi:10.1038/s41598-020-69363-7
  • Bachtiar M, Ooi BNS, Wang J, et al. Towards precision medicine: interrogating the human genome to identify drug pathways associated with potentially functional, population-differentiated polymorphisms. Pharmacogenomics J. 2019;19(6):516–527. doi:10.1038/s41397-019-0096-y
  • Ingelsson E, McCarthy MI. Human genetics of obesity and type 2 diabetes mellitus: past, present, and future. Circ Genom Precis Med. 2018;11(6):e002090. doi:10.1161/CIRCGEN.118.002090
  • Prudente S, Jungtrakoon P, Marucci A, et al. Loss-of-function mutations in APPL1 in familial diabetes mellitus. Am Hum Genet. 2015;97(1):177–185. doi:10.1016/j.ajhg.2015.05.011
  • Zhang J, Yuan K, Ding SX, et al. Hyperglycemia caused by mutation of GCK gene in 10 patients analysis of clinical and mutation characteristics. Zhonghua Er Ke Za Zhi. 2019;57(6):440–444.
  • Meyre D, Andress EJ, Sharma T, et al. Contribution of rare coding mutations in CD36 to type 2 diabetes and cardio-metabolic complications. Sci Rep. 2019;9(1):17123. doi:10.1038/s41598-019-53388-8
  • Yan J, Jiang F, Zhang R. Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J Mol Cell Biol. 2017;9(1):376–383. doi:10.1093/jmcb/mjx039
  • Yu H, Liu J, Li X. Identification of a novel mutation site in maturity-onset diabetes of the young in a Chinese family by whole-exome sequencing. Mol Med Rep. 2019;20(1):2373–2380.
  • Abecasis GR, Altshuler D, Auton A, Brooks LD; The 1000 Genomes Project Consortium. A map of human genome variation from population scale sequencing. Nature. 2010;467(7319):1061–1073.
  • Sherry ST, Ward MH, Kholodov M, et al. dbSNP: theNCBI database of genetic variation. Nucleic Acids Res. 2001;29(1):308–311. doi:10.1093/nar/29.1.308
  • Gandolfi B, Grahn RA, Gustafson NA, et al. Variant in CMAH is associated with blood typeAB in ragdoll cats. PLoS One. 2016;11(5):e0154973. doi:10.1371/journal.pone.0154973
  • Laskowski RA, Jablonska J, Pravda L, Varekova RS, Thornton JM. PDBsum: structural summaries of PDB entries. Protein Sci. 2018;27(1):129–134. doi:10.1002/pro.3289
  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–D462. doi:10.1093/nar/gkv1070
  • Zhou YY, Chen LP, Zhang Y, et al. Integrated transcriptomic analysis reveals hub genes involved in diagnosis and prognosis of pancreatic cancer. Mol Med. 2019;25(1):47. doi:10.1186/s10020-019-0113-2
  • Davis RC, Diep A, Hunziker W, et al. Assignment of human pancreatic lipase gene (PNLIP) to chromosome 10q24-q26. Genomics. 1991;11(4):1164–1166. doi:10.1016/0888-7543(91)90048-J
  • CrenonI I, Jayne S, Kerfelec B, Hermoso J, Pignol D, Chapus C. Pancreatic lipase-related protein type 1:a double mutation restores a significant lipase activity. Biochem Biophy Res Commun. 1998;246(2):513–517. doi:10.1006/bbrc.1998.8651
  • Lowe ME. The triglyceride lipases of the pancreas. J Lipid Res. 2002;43(12):2007–2016. doi:10.1194/jlr.R200012-JLR200
  • Birk RZ, Brannon PM. Regulation of pancreatic lipase by dietary medium chain triglycerides in the weanling rat. Pediatr Res. 2004;55(6):921–926. doi:10.1203/01.PDR.0000127430.04127.4F
  • Ren J, Chen Z, Zhang W, et al. Increased fat mass and insulin resistance in mice lacking pancreatic lipase-related protein 1. J Nutr Biochem. 2011;22(7):691–698. doi:10.1016/j.jnutbio.2010.06.002
  • Athyros VG, Doumas M, Imprialos KP, et al. Diabetes and lipid metabolism. Hormones. 2018;17(1):61–67. doi:10.1007/s42000-018-0014-8
  • Hsu LS, Chen GD, Lee LS, Chi CW, Cheng JF, Chen JY. Human Ca2+/Calmodulin-dependent protein kinase kinase beta gene encodes multiple isoforms that display distinct kinase activity. J Biol Chem. 2001;276(33):31113–31123. doi:10.1074/jbc.M011720200
  • Marcelo KL, Ribar T, Means CR, et al. Research resource: roles for calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) in systems metabolism. Mol Endocrinol. 2016;30(5):557–572. doi:10.1210/me.2016-1021
  • Murao K, Li J, Imachi H, Muraoka T, Masugata H. Exendin-4 regulates glucokinase expression by CaMKK/CaMKIV pathway in pancreatic â-cell line. Diabetes Obes Metab. 2009;11(10):939–946. doi:10.1111/j.1463-1326.2009.01067.x
  • Li JH, Murao K, Imachi H, et al. Exendin-4 regulates pancreatic ABCA1 transcription via CAMKK/CaMKIVpathway. J Cell Mol Med. 2010;14(5):1083–1087.
  • Lyu J, Imachi H, Fukunaga K, et al. Role of ATP-binding cassette transporter A1 in suppressing lipid accumulation by glucagon-like peptide-1 agonist in hepatocytes. Mol Metab. 2020;34(1):16–26. doi:10.1016/j.molmet.2019.12.015
  • Isaac R, Goldstein I, Furth N, et al. TM7SF3, a novel p53-regulated homeostatic factor, attenuates cellular stress and the subsequent induction of the unfolded protein response. Cell Death Differ. 2017;24(1):132–143. doi:10.1038/cdd.2016.108
  • Esser N, Legrand-poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract. 2014;105(2):141–150. doi:10.1016/j.diabres.2014.04.006
  • Ward MG, Li G. Apoptotic â-cells induce macrophage reprogramming under diabetic conditions. J Biol Chem. 2018;293(42):16160–16173. doi:10.1074/jbc.RA118.004565
  • Kam A, Li KM, Razmovski-Naumovski V, et al. Curcumin reduces tumour necrosis factor-enhanced annexin V-Positive microparticle release in human vascular endothelial cells. J Pharm Pharm Sci. 2015;18(4):424–433. doi:10.18433/J3ZC8G
  • Yang HB, Zhao PJ, Tian SL. Clopidogrel protects endothelium by hindering TNFá-InducedVCAM-1 expression through CaMKKâ/AMPK/Nrf2 pathway. J Diabetes Res. 2016;2016:9128050. doi:10.1155/2016/9128050
  • Ge Q, Zhao L, Ren XM, Ye P, Hu ZY. LCZ696, an angiotensin receptor-neprilysin inhibitor, ameliorates diabetic cardiomyopathy by inhibiting inflammation, oxidative stress and apoptosis. Exp Biol Med (Maywood). 2019;244(12):1028–1039. doi:10.1177/1535370219861283
  • Iwabu M, Yamauchi T, Okada-Iwabu M, et al. Adiponectin and AdipoR1 regulate PGC-1á and mitochondria by Ca2+ andAMPK/SIRT1. Nature. 2010;464(7293):1313–1319. doi:10.1038/nature08991
  • Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res. 2016;11(3):372–385. doi:10.4103/1673-5374.179032
  • Ventura FV, Costa CG, Ijlst L, et al. Broad specificity of carnitine palmitoyl transferase II towards long-chain acyl-CoA beta-oxidation intermediates and its practical approach to the synthesis of various long-chain acylacarnitines. J Inherit Metab Dis. 1997;20(3):423–426. doi:10.1023/A:1005315003913
  • Maeda A, Shirao T, Shirasaya D, et al. Piperine promotes glucose uptake through ROS-dependent activation of the CAMKK/AMPK signaling pathway in skeletal muscle. Mol Nutr Food Res. 2018;62(11):e1800086. doi:10.1002/mnfr.201800086
  • Kim SJ, Quan HY, Jeong KJ, et al. Beneficial effect of betulinic acid on hyperglycemia via suppression of hepatic glucose production. Agr Food Chem. 2014;62(2):434–442. doi:10.1021/jf4030739
  • Chen X, Chen S, Shen T, et al. Adropin regulates hepatic glucose production via PP2A/AMPK pathway in insulin-resistant hepatocytes. FASEB J. 2020;34(8):10056–10072. doi:10.1096/fj.202000115RR