105
Views
9
CrossRef citations to date
0
Altmetric
Original Research

The Downregulation of Prognosis- and Immune Infiltration-Related Gene CYFIP2 Serves as a Novel Target in ccRCC

, , , , ORCID Icon, & show all
Pages 6587-6599 | Published online: 11 Oct 2021

References

  • Hsieh JJ, Purdue MP, Signoretti S, et al. Renal cell carcinoma. Nat Rev Dis Prim. 2017;3(1):17009. doi:10.1038/nrdp.2017.9
  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–1564. doi:10.1126/science.1203543
  • Yin L, Li W, Xu A, et al. SH3BGRL2 inhibits growth and metastasis in clear cell renal cell carcinoma via activating hippo/TEAD1-twist1 pathway. EBioMedicine. 2020;51:102596. doi:10.1016/j.ebiom.2019.12.005
  • Gilyazova IR, Klimentova EA, Bulygin KV, et al. MicroRNA-200 family expression analysis in metastatic clear cell renal cell carcinoma patients. Cancer Gene Ther. 2020;27(10–11):768–772. doi:10.1038/s41417-019-0149-z
  • Cancer Genome Atlas Research, N. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–49. doi:10.1038/nature12222
  • Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8(8):592–603. doi:10.1038/nrc2442
  • Schenck A, Bardoni B, Moro A, Bagni C, Mandel JL. A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P. Proc Natl Acad Sci USA. 2001;98(15):8844–8849. doi:10.1073/pnas.151231598
  • Abekhoukh S, Bardoni B. CYFIP family proteins between autism and intellectual disability: links with Fragile X syndrome. Front Cell Neurosci. 2014;8:81. doi:10.3389/fncel.2014.00081
  • Zhang Y, Lee Y, Han K. Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy. BMB Rep. 2019;52(5):304–311. doi:10.5483/BMBRep.2019.52.5.097
  • Tiwari SS, Mizuno K, Ghosh A, et al. Alzheimer-related decrease in CYFIP2 links amyloid production to tau hyperphosphorylation and memory loss. Brain. 2016;139(Pt 10):2751–2765. doi:10.1093/brain/aww205
  • Nakashima M, Kato M, Aoto K, et al. De novo hotspot variants in CYFIP2 cause early-onset epileptic encephalopathy. Ann Neurol. 2018;83(4):794–806. doi:10.1002/ana.25208
  • Zweier M, Begemann A, McWalter K, et al. Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur J Hum Genet. 2019;27(5):747–759. doi:10.1038/s41431-018-0331-z
  • Zhang Y, Kang H, Lee Y, et al. Smaller body size, early postnatal lethality, and cortical extracellular matrix-related gene expression changes of Cyfip2-null embryonic mice. Front Mol Neurosci. 2018;11:482. doi:10.3389/fnmol.2018.00482
  • Silva JM, Ezhkova E, Silva J, et al. Cyfip1 is a putative invasion suppressor in epithelial cancers. Cell. 2009;137(6):1047–1061. doi:10.1016/j.cell.2009.04.013
  • Shi X, Chen X, Li WC, et al. Low expression of Cyfip1 may be a potential biomarker in nasopharyngeal carcinoma. Neoplasma. 2018;65(2):292–295. doi:10.4149/neo_2018_170318N194
  • Dziunycz PJ, Neu J, Lefort K, et al. CYFIP1 is directly controlled by NOTCH1 and down-regulated in cutaneous squamous cell carcinoma. PLoS One. 2017;12(4):e0173000. doi:10.1371/journal.pone.0173000
  • Chang YS, Huang HD, Yeh KT, Chang JG. Identification of novel mutations in endometrial cancer patients by whole-exome sequencing. Int J Oncol. 2017;50(5):1778–1784. doi:10.3892/ijo.2017.3919
  • Shabani S, Khayer N, Motalebzadeh J, Majidi Zadeh T, Mahjoubi F. Characterization of pathways involved in colorectal cancer using real-time RT-PCR gene expression data. Gastroenterol Hepatol Bed Bench. 2021;14(2):123–131.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102
  • Xiao W, Wang X, Wang T, Xing J. MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma. Aging. 2019;11(2):615–633. doi:10.18632/aging.101763
  • Yuan C, Xiong Z, Shi J, et al. Overexpression of PPT2 represses the clear cell renal cell carcinoma progression by reducing epithelial-to-mesenchymal transition. J Cancer. 2020;11(5):1151–1161. doi:10.7150/jca.36477
  • Xiao W, Wang X, Wang T, Xing J. Overexpression of BMP1 reflects poor prognosis in clear cell renal cell carcinoma. Cancer Gene Ther. 2020;27(5):330–340. doi:10.1038/s41417-019-0107-9
  • Jiao S, Li N, Cai S, Guo H, Wen Y. Inhibition of CYFIP2 promotes gastric cancer cell proliferation and chemoresistance to 5-fluorouracil through activation of the Akt signaling pathway. Oncol Lett. 2017;13(4):2133–2140. doi:10.3892/ol.2017.5743
  • Jackson RS 2nd, Cho YJ, Stein S, Liang P. CYFIP2, a direct p53 target, is leptomycin-B sensitive. Cell Cycle. 2007;6(1):95–103. doi:10.4161/cc.6.1.3665
  • Liang YC, Wang JL, Wang HT, Liu H, Zhang HL, Liang YX. ADRM1 as a therapeutic target in hepatocellular carcinoma. Kaohsiung J Med Sci. 2020:37(1):47–54.
  • Lin PH, Tung YT, Chen HY, et al. Melatonin activates cell death programs for the suppression of uterine leiomyoma cell proliferation. J Pineal Res. 2020;68(1):e12620. doi:10.1111/jpi.12620
  • Karimzadeh MR, Pourdavoud P, Ehtesham N, et al. Regulation of DNA methylation machinery by epi-miRNAs in human cancer: emerging new targets in cancer therapy. Cancer Gene Ther. 2020;28(3):157–174.
  • Wu C, Chen W, Yu F, et al. Long noncoding RNA HITTERS protects oral squamous cell carcinoma cells from endoplasmic reticulum stress-induced apoptosis via promoting MRE11-RAD50-NBS1 complex formation. Adv Sci. 2020;7(22):2002747. doi:10.1002/advs.202002747
  • Liu S, Cheng K, Zhang H, et al. Methylation status of the nanog promoter determines the switch between cancer cells and cancer stem cells. Adv Sci. 2020;7(5):1903035. doi:10.1002/advs.201903035
  • Li W, Huang K, Wen F, et al. LINC00184 silencing inhibits glycolysis and restores mitochondrial oxidative phosphorylation in esophageal cancer through demethylation of PTEN. EBioMedicine. 2019;44:298–310. doi:10.1016/j.ebiom.2019.05.055
  • Xiang S, Dauchy RT, Hoffman AE, et al. Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer. J Pineal Res. 2019;67(2):e12586. doi:10.1111/jpi.12586
  • Peng W, Huang W, Ge X, Xue L, Zhao W, Xue J. Type Igamma phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. EBioMedicine. 2019;44:375–386. doi:10.1016/j.ebiom.2019.05.015
  • Linehan WM, Schmidt LS, Crooks DR, et al. The metabolic basis of kidney cancer. Cancer Discov. 2019;9(8):1006–1021. doi:10.1158/2159-8290.CD-18-1354
  • Xiao W, Wang X, Wang T, Chen B, Xing J. HAO2 inhibits malignancy of clear cell renal cell carcinoma by promoting lipid catabolic process. J Cell Physiol. 2019;234(12):23005–23016. doi:10.1002/jcp.28861
  • Xiao W, Wang C, Chen K, et al. MiR-765 functions as a tumour suppressor and eliminates lipids in clear cell renal cell carcinoma by downregulating PLP2. EBioMedicine. 2020;51:102622. doi:10.1016/j.ebiom.2019.102622
  • Wettersten HI, Aboud OA, Lara PN Jr., Weiss RH. Metabolic reprogramming in clear cell renal cell carcinoma. Nat Rev Nephrol. 2017;13(7):410–419. doi:10.1038/nrneph.2017.59
  • Xiao W, Xiong Z, Xiong W, et al. Melatonin/PGC1A/UCP1 promotes tumor slimming and represses tumor progression by initiating autophagy and lipid browning. J Pineal Res. 2019;67(4):e12607. doi:10.1111/jpi.12607
  • Xiao W, Chen K, Zhang X. Pivotal biomarker expression and drug screening in advanced ccRCC. Clin Transl Med. 2020;10(2):e114. doi:10.1002/ctm2.114
  • Wen YC, Lin YW, Chu CY, et al. Melatonin-triggered post-transcriptional and post-translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma. J Pineal Res. 2020;69(2):e12668. doi:10.1111/jpi.12668
  • Shen S, Wang JW, Zheng BH, et al. The lnc-CITED2-2:1 inhibits metastasis via inhibiting CITED2 and epithelial-mesenchymal transition in gallbladder cancer. Clin Transl Med. 2020;10(2):e116.
  • Wang H, Wang M, Wen Y, et al. Biphasic regulation of mesenchymal genes controls fate switches during hematopoietic differentiation of human pluripotent stem cells. Adv Sci. 2020;7(20):2001019. doi:10.1002/advs.202001019
  • Agrawal B. New therapeutic targets for cancer: the interplay between immune and metabolic checkpoints and gut microbiota. Clin Transl Med. 2019;8(1):23. doi:10.1186/s40169-019-0241-x
  • Toulmonde M, Lucchesi C, Verbeke S, et al. High throughput profiling of undifferentiated pleomorphic sarcomas identifies two main subgroups with distinct immune profile, clinical outcome and sensitivity to targeted therapies. EBioMedicine. 2020;62:103131. doi:10.1016/j.ebiom.2020.103131
  • Frohlich A, Sirokay J, Fietz S, et al. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. EBioMedicine. 2020;59:102962. doi:10.1016/j.ebiom.2020.102962
  • Mayne M, Moffatt T, Kong H, et al. CYFIP2 is highly abundant in CD4+ cells from multiple sclerosis patients and is involved in T cell adhesion. Eur J Immunol. 2004;34(4):1217–1227. doi:10.1002/eji.200324726