132
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Relationship Between Plasma Total Homocysteine Levels and Mean Corrected TIMI Frame Count in Patients with Acute Myocardial Infarction

ORCID Icon, , ORCID Icon &
Pages 8161-8172 | Published online: 15 Nov 2021

References

  • Tambe AA, Demany MA, Zimmerman HA, et al. Angina pectoris and slow flow velocity of dye in coronary arteries – a new angiographic finding. Am Heart J. 1972;84(1):66–71. doi:10.1016/0002-8703(72)90307-9
  • Mangieri E, Macchiarelli G, Ciavolella M, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn. 1996;37(4):375–381. doi:10.1002/(SICI)1097-0304(199604)37:4<375::AID-CCD7>3.0.CO;2-8
  • Mosseri M, Yarom R, Gotsman MS, et al. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation. 1986;74(5):964–972. doi:10.1161/01.CIR.74.5.964
  • Papapostolou S, Andrianopoulos N, Duffy SJ, et al. Long-term clinical outcomes of transient and persistent no-reflow following percutaneous coronary intervention (PCI): a multicentre Australian registry. EuroIntervention. 2018;14(2):185–193. doi:10.4244/EIJ-D-17-00269
  • Armstrong R, De Maria GL, Scarsini R, et al. Assessing and managing coronary microcirculation dysfunction in acute ST-segment elevation myocardial infarction. Expert Rev Cardiovasc Ther. 2019;17(2):111–126. doi:10.1080/14779072.2019.1561279
  • Gibson CM, Cannon CP, Daley WL, et al. TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation. 1996;93(5):879–888. doi:10.1161/01.CIR.93.5.879
  • Vijayan S, Barmby DS, Pearson IR, et al. Assessing coronary blood flow physiology in the cardiac catheterisation laboratory. Curr Cardiol Rev. 2017;13(3):232–243. doi:10.2174/1573403X13666170525102618
  • Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol. 2018;175(8):1173–1189. doi:10.1111/bph.13988
  • Riza Erbay A, Turhan H, Yasar AS, et al. Elevated level of plasma homocysteine in patients with slow coronary flow. Int J Cardiol. 2005;102(3):419–423. doi:10.1016/j.ijcard.2004.05.064
  • Barutcu I, Sezgin AT, Sezgin N, et al. Elevated plasma homocysteine level in slow coronary flow. Int J Cardiol. 2005;101(1):143–145. doi:10.1016/j.ijcard.2004.01.030
  • Yurtdaş M, Özcan IT, Seyis AS, et al. Plasma homocysteine is associated with ischemic findings without organic stenosis in patients with slow coronary flow. J Cardiol. 2013;61(2):138–143. doi:10.1016/j.jjcc.2012.10.001
  • Alihanoglu YI, Yildiz BS, Özcan EE, et al. Impaired coronary blood flow may be related to elevated homocysteine levels in patients with metabolic syndrome. Wien Klin Wochenschr. 2015;127(21–22):864–870. doi:10.1007/s00508-015-0854-z
  • Tanriverdi H, Evrengul H, Enli Y, et al. Effect of homocysteine-induced oxidative stress on endothelial function in coronary slow-flow. Cardiology. 2007;107(4):313–320. doi:10.1159/000099068
  • Li N, Tian L, Ren J, et al. Evaluation of homocysteine in the diagnosis and prognosis of coronary slow flow syndrome. Biomark Med. 2019;13(17):1439–1446. doi:10.2217/bmm-2018-0446
  • Tang O, Wu J, Qin F. Relationship between methylenetetrahydrofolate reductase gene polymorphism and the coronary slow flow phenomenon. Coron Artery Dis. 2014;25(8):653–657. doi:10.1097/MCA.0000000000000151
  • Demirci E, Çelik O, Kalçık M, et al. Evaluation of homocystein and asymmetric dimethyl arginine levels in patients with coronary slow flow phenomenon. Interv Med Appl Sci. 2019;11:89–94.
  • Li J, Zhou Y, Zhang Y, et al. Admission homocysteine is an independent predictor of spontaneous reperfusion and early infarct-related artery patency before primary percutaneous coronary intervention in ST-segment elevation myocardial infarction. BMC Cardiovasc Disord. 2018;18(1):125. doi:10.1186/s12872-018-0868-3
  • Mukhopadhyay S, Kumar M, Yusuf J, et al. Risk factors and angiographic profile of coronary slow flow (CSF) phenomenon in North Indian population: an observational study. Indian Heart J. 2018;70(3):405–409. doi:10.1016/j.ihj.2017.09.001
  • Fox KA, Anderson FA Jr, Dabbous OH, et al. Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart. 2007;93(2):177–182. doi:10.1136/hrt.2005.084830
  • Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51(3):606. doi:10.1016/S0002-9149(83)80105-2
  • Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon – a new coronary microvascular disorder. Cardiology. 2002;97(4):197–202. doi:10.1159/000063121
  • Sanghvi S, Mathur R, Baroopal A, et al. Clinical, demographic, risk factor and angiographic profile of coronary slow flow phenomenon: a single centre experience. Indian Heart J. 2018;70:S290–294. doi:10.1016/j.ihj.2018.06.001
  • Ghaffari S, Tajlil A, Aslanabadi N, et al. Clinical and laboratory predictors of coronary slow flow in coronary angiography. Perfusion. 2017;32(1):13–19. doi:10.1177/0267659116659918
  • Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012;33(22):2771b–2782b. doi:10.1093/eurheartj/ehs246
  • Celermajer DS, Sorensen K, Ryalls M, et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol. 1993;22(3):854–858. doi:10.1016/0735-1097(93)90203-D
  • Cheng Z, Jiang X, Kruger WD, et al. Hyperhomocysteinemia impairs endothelium-derived hyperpolarizing factor-mediated vasorelaxation in transgenic cystathionine beta synthase-deficient mice. Blood. 2011;118:1998–2006.
  • Cheng Z, Shen X, Jiang X, et al. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: role of insufficient hydrogen sulfide. Redox Biol. 2018;16:215–225. doi:10.1016/j.redox.2018.02.006
  • Cueto R, Zhang L, Shan HM, et al. Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile - novel hypothesis establishment. Redox Biol. 2018;17:70–88. doi:10.1016/j.redox.2018.03.015
  • Kibel A, Selthofer-Relatic K, Drenjancevic I, et al. Coronary microvascular dysfunction in diabetes mellitus. J Int Med Res. 2017;45(6):1901–1929. doi:10.1177/0300060516675504
  • Yang J, Park Y, Zhang H, et al. Feed-forward signaling of TNF-α and NF-κB via IKK-β pathway contributes to insulin resistance and coronary arteriolar dysfunction in type 2 diabetic mice. Am J Physiol Heart Circ Physiol. 2009;296(6):1850–1858. doi:10.1152/ajpheart.01199.2008
  • Verma N, Liu M, Ly H, et al. Diabetic microcirculatory disturbances and pathologic erythropoiesis are provoked by deposition of amyloid-forming amylin in red blood cells and capillaries. Kidney Int. 2020;97(1):143–155. doi:10.1016/j.kint.2019.07.028
  • Di Carli MF, Janisse J, Grunberger G, et al. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol. 2003;41(8):1387–1393. doi:10.1016/S0735-1097(03)00166-9
  • Woodman RJ, Watts GF, Playford DA, et al. Oxidized LDL and small LDL particle size are independently predictive of a selective defect in microcirculatory endothelial function in type 2 diabetes. Diabetes Obes Metab. 2005;7(5):612–617. doi:10.1111/j.1463-1326.2005.00478.x
  • von Scholten BJ, Hasbak P, Christensen TE, et al. Cardiac (82) Rb PET/CT for fast and non-invasive assessment of microvascular function and structure in asymptomatic patients with type 2 diabetes. Diabetologia. 2016;59(2):371–378. doi:10.1007/s00125-015-3799-x
  • Nitenberg A, Valensi P, Sachs R, et al. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes. 1993;42(7):1017–1025. doi:10.2337/diab.42.7.1017
  • Yokoyama I, Momomura S, Ohtake T, et al. Reduced myocardial flow reserve in non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1997;30(6):1472–1477. doi:10.1016/S0735-1097(97)00327-6
  • He W, Huang Y, Zhang Y, et al. Cardiac rehabilitation therapy for coronary slow flow phenomenon. Herz. 2020;45(5):468–474. doi:10.1007/s00059-018-4742-y
  • Löffler AI, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and management. Curr Cardiol Rep. 2016;18(1):1. doi:10.1007/s11886-015-0682-9
  • Mittal SR. Diagnosis of coronary microvascular dysfunction - present status. Indian Heart J. 2015;67:552–560.
  • Evrengul H, Tanriverdi H, Kuru O, et al. Elevated homocysteine levels in patients with slow coronary flow: relationship with Helicobacter pylori infection. Helicobacter. 2007;12(4):298–305. doi:10.1111/j.1523-5378.2007.00505.x