124
Views
6
CrossRef citations to date
0
Altmetric
Original Research

Exploring the Molecular Mechanism of lncRNA–miRNA–mRNA Networks in Non-Syndromic Cleft Lip with or without Cleft Palate

, , , , & ORCID Icon
Pages 9931-9943 | Published online: 16 Dec 2021

References

  • Young JI, Slifer S, Hecht JT, Blanton SH. DNA methylation variation is identified in monozygotic twins discordant for non-syndromic cleft lip and palate. Front Cell Dev Biol. 2021;9:656865. doi:10.3389/fcell.2021.656865
  • Mossey PA, Little J, Munger RG, Dixon MJ, Shaw WC. Cleft lip and palate. Lancet. 2009;374(9703):1773–1785. doi:10.1016/S0140-6736(09)60695-4
  • Ludwig KU, Ahmed ST, Bohmer AC, et al. Meta-analysis reveals genome-wide significance at 15q13 for nonsyndromic clefting of both the lip and the palate, and functional analyses implicate GREM1 as a plausible causative gene. PLoS Genet. 2016;12(3):e1005914. doi:10.1371/journal.pgen.1005914
  • Gluud M, Willerslev-Olsen A, Gjerdrum L, et al. MicroRNAs in the pathogenesis, diagnosis, prognosis and targeted treatment of cutaneous T-cell lymphomas. Cancers (Basel). 2020;12(5). doi:10.3390/cancers12051229
  • Tran AT, Chapman EM, Flamand MN, et al. MiR-35 buffers apoptosis thresholds in the C. elegans germline by antagonizing both MAPK and core apoptosis pathways. Cell Death Differ. 2019;26(12):2637–2651. doi:10.1038/s41418-019-0325-6
  • Li W, Zhou J, Zhang Y, et al. Echinacoside exerts anti-tumor activity via the miR-503-3p/TGF-beta1/Smad aixs in liver cancer. Cancer Cell Int. 2021;21(1):304. doi:10.1186/s12935-021-01890-3
  • Zhang W, Shen Z, Xing Y, et al. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-beta/Smad signaling pathway in cleft palate. Exp Cell Res. 2020;386(2):111734. doi:10.1016/j.yexcr.2019.111734
  • Suzuki A, Li A, Gajera M, et al. MicroRNA-374a, −4680, and −133b suppress cell proliferation through the regulation of genes associated with human cleft palate in cultured human palate cells. BMC Med Genomics. 2019;12(1):93. doi:10.1186/s12920-019-0546-z
  • Zhao C, Qiu Y, Zhou S, Liu S, Zhang W, Niu Y. Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction. BMC Genomics. 2020;21(Suppl 13):867. doi:10.1186/s12864-020-07238-x
  • Gong J, Liu W, Zhang J, Miao X, Guo AY. lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 2015;43(Databaseissue):D181–6. doi:10.1093/nar/gku1000
  • Yun L, Ma L, Wang M, et al. Rs2262251 in lncRNA RP11-462G12.2 is associated with nonsyndromic cleft lip with/without cleft palate. Hum Mutat. 2019;40(11):2057–2067. doi:10.1002/humu.23859
  • Gao L, Liu Y, Wen Y, LncRNA WW. H19-mediated mouse cleft palate induced by all-trans retinoic acid. Hum Exp Toxicol. 2017;36(4):395–401. doi:10.1177/0960327116651121
  • Li H, Jones KL, Hooper JE, Williams T. The molecular anatomy of mammalian upper lip and primary palate fusion at single cell resolution. Development. 2019;146(12). doi:10.1242/dev.174888
  • Yu W, Serrano M, Miguel SS, Ruest LB, Svoboda KK. Cleft lip and palate genetics and application in early embryological development. Indian J Plast Surg. 2009;42 Suppl:S35–50. doi:10.4103/0970-0358.57185
  • Greene RM, Pisano MM. Palate morphogenesis: current understanding and future directions. Birth Defects Res C Embryo Today. 2010;90(2):133–154. doi:10.1002/bdrc.20180
  • Du M, Yuan L, Tan X, et al. The LPS-inducible lncRNA Mirt2 is a negative regulator of inflammation. Nat Commun. 2017;8(1):2049. doi:10.1038/s41467-017-02229-1
  • Schoen C, Aschrafi A, Thonissen M, Poelmans G, Von den Hoff JW, Carels C. MicroRNAs in palatogenesis and cleft palate. Front Physiol. 2017;8:165. doi:10.3389/fphys.2017.00165
  • Yang Y, Yujiao W, Fang W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 2020;53(1):40. doi:10.1186/s40659-020-00309-z
  • Schoen C, Glennon JC, Abghari S, et al. Differential microRNA expression in cultured palatal fibroblasts from infants with cleft palate and controls. Eur J Orthod. 2018;40(1):90–96. doi:10.1093/ejo/cjx034
  • Gao LY, Hao XL, Zhang L, Wan T, Liu JY, Cao J. Identification and characterization of differentially expressed lncRNA in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cleft palate. Hum Exp Toxicol. 2020;39(5):748–761. doi:10.1177/0960327119899996
  • Wickliffe K, Williamson A, Jin L, Rape M. The multiple layers of ubiquitin-dependent cell cycle control. Chem Rev. 2009;109(4):1537–1548. doi:10.1021/cr800414e
  • Komander D, Clague MJ, Urbe S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 2009;10(8):550–563. doi:10.1038/nrm2731
  • Yang J, Yu X, Zhu G, et al. Integrating GWAS and eQTL to predict genes and pathways for non-syndromic cleft lip with or without palate. Oral Dis. 2020. doi:10.1111/odi.13699
  • Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004;1695(1–3):189–207. doi:10.1016/j.bbamcr.2004.10.003
  • McFarlane C, Kelvin AA, de la Vega M, et al. The deubiquitinating enzyme USP17 is highly expressed in tumor biopsies, is cell cycle regulated, and is required for G1-S progression. Cancer Res. 2010;70(8):3329–3339. doi:10.1158/0008-5472.CAN-09-4152
  • Shin JM, Yoo KJ, Kim MS, Kim D, Baek KH. Hyaluronan- and RNA-binding deubiquitinating enzymes of USP17 family members associated with cell viability. BMC Genomics. 2006;7:292. doi:10.1186/1471-2164-7-292
  • Lambies G, Garcia DHA, Diaz VM. The role of DUBs in the post-translational control of cell migration. Essays Biochem. 2019;63(5):579–594. doi:10.1042/EBC20190022
  • Miao LJ, Huang SF, Sun ZT, et al. MiR-449c targets c-Myc and inhibits NSCLC cell progression. FEBS Lett. 2013;587(9):1359–1365. doi:10.1016/j.febslet.2013.03.006
  • Chen X, Wang A, Yue X. miR-449c inhibits migration and invasion of gastric cancer cells by targeting PFKFB3. Oncol Lett. 2018;16(1):417–424. doi:10.3892/ol.2018.8609
  • Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi:10.1016/j.cell.2012.03.003
  • Amendola D, De Salvo M, Marchese R, et al. Myc down-regulation affects cyclin D1/cdk4 activity and induces apoptosis via Smac/Diablo pathway in an astrocytoma cell line. Cell Prolif. 2009;42(1):94–109. doi:10.1111/j.1365-2184.2008.00576.x
  • Pietenpol JA, Holt JT, Stein RW, Moses HL. Transforming growth factor beta 1 suppression of c-myc gene transcription: role in inhibition of keratinocyte proliferation. Proc Natl Acad Sci U S A. 1990;87(10):3758–3762. doi:10.1073/pnas.87.10.3758
  • Liu L, Guo X, Rao JN, et al. Polyamines regulate E-cadherin transcription through c-Myc modulating intestinal epithelial barrier function. Am J Physiol Cell Physiol. 2009;296(4):C801–10. doi:10.1152/ajpcell.00620.2008
  • Kitase Y, Shuler CF. Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex. Int J Dev Biol. 2013;57(1):55–60. doi:10.1387/ijdb.120117yk
  • Jiang S, Shi JY, Lin YS, et al. NTN1 gene was risk to non-syndromic cleft lip only among Han Chinese population. Oral Dis. 2019;25(2):535–542. doi:10.1111/odi.13009
  • Salagovic J, Klimcakova L, Zabavnikova M, et al. Polymorphisms at 1q32, 8q24, and 17q22 loci are associated with nonsyndromic cleft lip with or without cleft palate risk in the Slovak population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017;161(2):152–157. doi:10.5507/bp.2017.009
  • Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet. 2009;41(4):473–477. doi:10.1038/ng.333
  • Grant SF, Wang K, Zhang H, et al. A genome-wide association study identifies a locus for nonsyndromic cleft lip with or without cleft palate on 8q24. J Pediatr. 2009;155(6):909–913. doi:10.1016/j.jpeds.2009.06.020
  • Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn. 2018;247(3):481–491. doi:10.1002/dvdy.24553
  • Oner DA, Tastan H. Association between the transforming growth factor Beta 1 gene polymorphisms and Turkish patients with nonsyndromic cleft lip with/without cleft palate. Genet Test Mol Biomarkers. 2016;20(5):265–268. doi:10.1089/gtmb.2015.0301
  • Lauder JM, Zimmerman EF. Sites of serotonin uptake in epithelia of the developing mouse palate, oral cavity, and face: possible role in morphogenesis. J Craniofac Genet Dev Biol. 1988;8(3):265–276.
  • Wu YH, Lee YH, Shih HY, Chen SH, Cheng YC, Tsun-Yee CD. Glucose-6-phosphate dehydrogenase is indispensable in embryonic development by modulation of epithelial-mesenchymal transition via the NOX/Smad3/miR-200b axis. Cell Death Dis. 2018;9(1):10. doi:10.1038/s41419-017-0005-8
  • Bahado-Singh RO, Schenone M, Cordoba M, et al. Male gender significantly increases risk of oxidative stress related congenital anomalies in the non-diabetic population. J Matern Fetal Neonatal Med. 2011;24(5):687–691. doi:10.3109/14767058.2010.529970
  • Kobayashi GS, Alvizi L, Sunaga DY, et al. Susceptibility to DNA damage as a molecular mechanism for non-syndromic cleft lip and palate. PLoS One. 2013;8(6):e65677. doi:10.1371/journal.pone.0065677
  • Dhulipala VC, Welshons WV, Reddy CS. Cell cycle proteins in normal and chemically induced abnormal secondary palate development: a review. Hum Exp Toxicol. 2006;25(11):675–682. doi:10.1177/0960327106070848
  • Huan T, Joehanes R, Schurmann C, et al. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking. Hum Mol Genet. 2016;25(21):4611–4623. doi:10.1093/hmg/ddw288
  • Hardy JJ, Mooney SR, Pearson AN, et al. Assessing the accuracy of blood RNA profiles to identify patients with post-concussion syndrome: a pilot study in a military patient population. PLoS One. 2017;12(9):e0183113. doi:10.1371/journal.pone.0183113
  • Zhang J, Zhou S, Zhang Q, et al. Proteomic analysis of RBP4/Vitamin A in children with cleft lip and/or palate. J Dent Res. 2014;93(6):547–552. doi:10.1177/0022034514530397
  • Li S, Jin S, Jin C. The correlative hypotheses between Pitchfork and Kif3a in palate development. Med Hypotheses. 2019;126:23–25. doi:10.1016/j.mehy.2019.03.005