102
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Investigation of Lymphocyte Subsets in Peripheral Blood of Patients with Benign Prostatic Hyperplasia

, , , , , , , & ORCID Icon show all
Pages 6951-6959 | Published online: 20 Oct 2021

References

  • Stoddard MD, Cho A, Te AE, Chughtai B. A systematic review on the timing of surgical intervention for benign prostatic enlargement (BPE). Curr Urol Rep. 2020;21(12):64. doi:10.1007/s11934-020-01016-8
  • Asiedu B, Anang Y, Nyarko A, et al. The role of sex steroid hormones in benign prostatic hyperplasia. Aging Male. 2017;20(1):17–22. doi:10.1080/13685538.2016.1272101
  • Chen B, Cao D, Chen Z, et al. Estrogen regulates the proliferation and inflammatory expression of primary stromal cell in benign prostatic hyperplasia. Transl Androl Urol. 2020;9(2):322–331. doi:10.21037/tau.2020.02.08
  • La Vignera S, Condorelli RA, Russo GI, Morgia G, Calogero AE. Endocrine control of benign prostatic hyperplasia. Andrology. 2016;4(3):404–411. doi:10.1111/andr.12186
  • De Nunzio C, Presicce F, Tubaro A. Inflammatory mediators in the development and progression of benign prostatic hyperplasia. Nat Rev Urol. 2016;13(10):613–626. doi:10.1038/nrurol.2016.168
  • Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol. 2019;20(3):175–193. doi:10.1038/s41580-018-0089-8
  • Wang M, Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: an update. Syst Biol Reprod Med. 2018;64(2):93–102. doi:10.1080/19396368.2017.1422046
  • Pace G, Di Massimo C, De Amicis D, et al. Oxidative stress in benign prostatic hyperplasia and prostate cancer. Urol Int. 2010;85(3):328–333. doi:10.1159/000315064
  • Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008;20(Suppl 3):S11–S18. doi:10.1038/ijir.2008.55
  • Phua TJ. The etiology and pathophysiology genesis of benign prostatic hyperplasia and prostate cancer: a new perspective. Medicines. 2021;8(6):30. doi:10.3390/medicines8060030
  • Somarelli JA, Gardner H, Cannataro VL, et al. Molecular biology and evolution of cancer: from discovery to action. Mol Biol Evol. 2020;37(2):320–326. doi:10.1093/molbev/msz242
  • Davizon-Castillo P, McMahon B, Aguila S, et al. TNF-α-driven inflammation and mitochondrial dysfunction define the platelet hyperreactivity of aging. Blood. 2019;134(9):727–740. doi:10.1182/blood.2019000200
  • Henry CJ, Casás-Selves M, Kim J, et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J Clin Invest. 2015;125(12):4666–4680. doi:10.1172/JCI83024
  • Pandareesh MD, Kameshwar VH, Byrappa K. Prostate carcinogenesis: insights in relation to epigenetics and inflammation. Endocr Metab Immune Disord Drug Targets. 2021;21(2):253–267. doi:10.2174/1871530320666200719020709
  • Werneck-Gomes H, Campolina-Silva GH, Maria BT, et al. Tumor-associated macrophages (TAM) are recruited to the aging prostate epithelial lesions and become intermingled with basal cells. Andrology. 2020;8(5):1375–1386. doi:10.1111/andr.12783
  • Tomaskovic I, Ruzic B, Trnski D, Kraus O. Chronic prostatitis/chronic pelvic pain syndrome in males may be an autoimmune disease, potentially responsive to corticosteroid therapy. Med Hypotheses. 2009;72(3):261–262. doi:10.1016/j.mehy.2008.10.020
  • Bostanci Y, Kazzazi A, Momtahen S, Laze J, Djavan B. Correlation between benign prostatic hyperplasia and inflammation. Curr Opin Urol. 2013;23(1):5–10. doi:10.1097/MOU.0b013e32835abd4a
  • Sandhu JS. Prostate cancer and chronic prostatitis. Curr Urol Rep. 2008;9(4):328–332. doi:10.1007/s11934-008-0056-6
  • Spînu D, Mischianu D, Surcel M, et al. Immunological investigations in prostatic pathology–a prospective study. Roum Arch Microbiol Immunol. 2014;73(1–2):51–55.
  • Liu Y, Mikrani R, Xie D, et al. Chronic prostatitis/chronic pelvic pain syndrome and prostate cancer: study of immune cells and cytokines. Fundam Clin Pharmacol. 2020;34(2):160–172. doi:10.1111/fcp.12517
  • Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol. 2020;20(1):55–70. doi:10.1038/s41577-019-0203-y
  • Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol. 2011;12(6):478–484. doi:10.1038/ni.2018
  • Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30(5):646–655. doi:10.1016/j.immuni.2009.05.001
  • Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol. 2009;27:591–619. doi:10.1146/annurev.immunol.021908.132706
  • Tarasenko TN, Pacheco SE, Koenig MK, et al. Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab. 2017;25(6):1254–1268.e7. doi:10.1016/j.cmet.2017.05.007
  • Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 2014;20(1):61–72. doi:10.1016/j.cmet.2014.05.004
  • Mendoza A, Fang V, Chen C, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546(7656):158–161. doi:10.1038/nature22352
  • Park Y, Jin HS, Lopez J, et al. TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest. 2013;123(12):5165–5178. doi:10.1172/JCI69751