105
Views
0
CrossRef citations to date
0
Altmetric
Original Research

A Hypoxia-Related Signature for Predicting Prognosis, Cellular Processes, Immune Microenvironment and Targeted Compounds in Lung Squamous Cell Carcinoma

ORCID Icon, , , , , & show all
Pages 3991-4006 | Published online: 12 Apr 2022

References

  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386. doi:10.1002/ijc.29210
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Khozin S, Miksad RA, Adami J, et al. Real-world progression, treatment, and survival outcomes during rapid adoption of immunotherapy for advanced non-small cell lung cancer. Cancer. 2019;125:4019–4032. doi:10.1002/cncr.32383
  • Miller KD, Nogueira L, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–385. doi:10.3322/caac.21565
  • Claiborn K, William G, Kaelin J, Gregg L. Semenza receive the 2012 ASCI/ Stanley J. Korsmeyer Award. J Clin Invest. 2012;122(4):1136–1137. doi:10.1172/jci63264
  • Chun YS, Lee KH, Choi E, et al. Phorbol ester stimulates the nonhypoxic induction of a novel hypoxia-Inducible factor 1α iso-form. Cancer Res. 2003;63(24):8700–8707.
  • Lind H, Zienolddiny S, Ekstrom PO, et al. Association of a functional polymorphism in the promoter of the MDM2 gene with risk of non small cell lung cancer. Int J Cancer. 2006;119(3):718–721.
  • Kiyohara C, Horiuchi T, Takayama K, et al. Genetic polymorphisms involved in the inflammatory response and lung cancer risk: a case – control study in Japan. Cytokine. 2014;65(1):88–94.
  • Manoochehri Khoshinani H, Afshar S. A double-edged sword in cancer therapy. Cancer Invest. 2016;34(10):536–545. doi:10.1080/07357907.2016.1245317
  • Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–5912. doi:10.1038/onc.2008.271
  • Al Tameemi W, Dale TP, Al-Jumaily RMK. Hypoxia-modified cancer cell metabolism. Front Cell Dev Biol. 2019;7:4.
  • Zhao C, Luo C, Wu X. Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med Oncol. 2015;32(1):419. doi:10.1007/s12032-014-0419-4
  • Bielecka Z, Malinowska A, Brodaczewska K, et al. Hypoxic 3D in vitro culture models reveal distinct resistance processes to TKIs in renal cancer cells. Cell Biosci. 2017;7:71. doi:10.1186/s13578-017-0197-8
  • Akanji MA, Rotimi D, Adeyemi OS. Hypoxia-inducible factors as an alternative source of treatment strategy for cancer. Oxid Med Cell Longev. 2019;2019:8547846.
  • Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–3671.
  • Harris AL. Hypoxia: a key regulatory factor in tumour growth. Nat Rev Cancer. 2002;2(1):38–47.
  • Walsh JC, Lebedev A, Aten E, Madsen K, Marciano L, Kolb HC. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal. 2014;21(10):1516–1554.
  • Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019;18(1):157.
  • Sonja H, Robert C, Justin G. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 2013;14:7.
  • Shen-Orr Shai S, Renaud G. Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Curr Opin Immunol. 2013;25:571–578.
  • Wanjuan Y, Jorge S, Patricia G, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013;41:D955–61.
  • Paul G, Nancy C, Stephanie HR. pR Rophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One. 2014;9:e107468.
  • Nick T, Hirsch FR, Luft alexander V, et al. Necitumumab plus gemcitabine and cisplatin versus gemcitabine and cisplatin alone as first-line therapy in patients with stage IV squamous non-small-cell lung cancer (SQUIRE): an open-label, randomised, controlled Phase 3 trial. Lancet Oncol. 2015;16:763–774.
  • Paz-Ares L, Socinski MA, Shahidi J, et al. Correlation of EGFR-expression with safety and efficacy outcomes in SQUIRE: a randomized, multicenter, open-label, Phase III study of gemcitabine-cisplatin plus necitumumab versus gemcitabine-cisplatin alone in the first-line treatment of patients with stage IV squamous non-small-cell lung cancer. Ann Oncol. 2016;27:1573–1579.
  • Julien M, Dariusz K, Alexander L, et al. Health-related quality of life with carboplatin-paclitaxel or nab-paclitaxel with or without pembrolizumab in patients with metastatic squamous non-small-cell lung cancer. J Clin Oncol. 2020;38:271–280.
  • Alan S, Robert G, Perry Michael C, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–2550.
  • Chun KW, Fong CT, Yan CK, et al. Haematological toxicity of pemetrexed in patients with metastatic non-squamous non-small cell carcinoma of lung with third-space fluid. Lung Cancer. 2021;152:15–20.
  • Grønberg BH, Bremnes RM, Oystein F, et al. Phase III study by the Norwegian lung cancer study group: pemetrexed plus carboplatin compared with gemcitabine plus carboplatin as first-line chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2009;27:3217–3224.
  • Rekhtman N, Paik PK, Arcila ME, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res. 2012;18:1167–1176. doi:10.1158/1078-0432.CCR-11-2109
  • Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–566. doi:10.1038/nature05945
  • Lynch TJ, DW Bell, R Sordella. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–2139. doi:10.1056/NEJMoa040938
  • Paez JG, PA Janne, JC Lee, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–1500. doi:10.1126/science.1099314
  • Shou Y, Yang L, Yang Y, Zhu X, Li F, Xu J. Identification of signatures of prognosis prediction for melanoma using a hypoxia score. Front Genet. 2020;11:570530. doi:10.3389/fgene.2020.570530
  • Peng-Ju G, You-Cheng S, Si-Rui H, et al. Corrigendum: hypoxia-associated prognostic markers and competing endogenous RNA co-expression networks in breast cancer. Front Oncol. 2020;10:637481.
  • Baohui Z, Bufu T, Jianyao G, et al. A hypoxia-related signature for clinically predicting diagnosis, prognosis and immune microenvironment of hepatocellular carcinoma patients. J Transl Med. 2020;18:342.
  • Devi TA, Kumar D, Vamsi Krishna K, Kantevari S. Microtubule targeting agents as cancer chemotherapeutics: an overview of molecular hybrids as stabilizing and destabilizing agents. Curr Top Med Chem. 2017;17:2523–2537. doi:10.2174/1568026617666170104145640
  • Tagliamento M, Genova C, Rossi G, et al. Microtubule-targeting agents in the treatment of non-small cell lung cancer: insights on new combination strategies and investigational compounds. Expert Opin Invest Drugs. 2019;28:513–523. doi:10.1080/13543784.2019.1627326
  • Bian X, Lin W. Targeting DNA replication stress and DNA double-strand break repair for optimizing SCLC treatment. Cancers. 2019;11(9):1289. PMID: 31480716; PMCID: PMC6770306. doi:10.3390/cancers11091289
  • Annalisa T, Elisabetta S, Valentina M, et al. The DNA-helicase HELLS drives ALK ALCL proliferation by the transcriptional control of a cytokinesis-related program. Cell Death Dis. 2021;12:130.
  • Tianyu L, Jian C, Du Q, et al. Family with sequence similarity 83 member A promotes tumor cell proliferation and metastasis and predicts poor prognosis in cervical cancer. Pathol Res Pract. 2021;222:153450.
  • Lee SY, Meier R, Furuta S, et al. FAM83A confers EGFR-TKI resistance in breast cancer cells and in mice. J Clin Invest. 2012;122:3211–3220. doi:10.1172/JCI60498
  • Grant S. FAM83A and FAM83B: candidate oncogenes and TKI resistance mediators. J Clin Invest. 2012;122:3048–3051. doi:10.1172/JCI64412
  • Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–622.
  • Whatcott CJ, Han H, Von Hoff DD. Orchestrating the tumor microenvironment to improve survival for patients with pancreatic cancer: normalization, not destruction. Cancer J. 2015;21:299–306.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi:10.1038/nature01322
  • Damgaci S, Ibrahim-Hashim A, Enriquez-Navas PM, Pilon-Thomas S, Guvenis A, Gillies RJ. Hypoxia and acidosis: immune suppressors and therapeutic targets. Immunology. 2018;154(3):354–362. doi:10.1111/imm.12917
  • Multhoff G, Vaupel P. Hypoxia compromises anti-cancer immune responses. Adv Exp Med Biol. 2020;1232:131–143. doi:10.1007/978-3-030-34461-0_18