121
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Association Between the Polymorphism of Steroid Hormone Metabolism Genes and High-Altitude Pulmonary Edema in the Chinese Han Population

ORCID Icon, , , , , , ORCID Icon, & show all
Pages 787-794 | Published online: 20 Jan 2022

References

  • Eichstaedt CA, Mairbäurl H, Song J, et al. Genetic predisposition to high-altitude pulmonary edema. High Alt Med Biol. 2020;21(1):28–36.
  • Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med. 2018;145:145–152.
  • Eichstaedt CA, Benjamin N, Grünig E. Genetics of pulmonary hypertension and high-altitude pulmonary edema. J Appl Physiol. 2020;128(5):1432–1438.
  • Yang Y, Xu J, Tang F, et al. NR3C2 gene is associated with susceptibility to high-altitude pulmonary edema in Han Chinese. Wilderness Environ Med. 2018;29(4):488–492.
  • Yang Y, Du H, Li Y, et al. NR3C1 gene polymorphisms are associated with high-altitude pulmonary edema in Han Chinese. J Physiol Anthropol. 2019;38(1):4.
  • Wilcox I, Chan KH, Lattimore JD. Hypoxia and inflammation. N Engl J Med. 2011;364(20):1976–1977;author reply 1977.
  • Hartmann G, Tschöp M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12(3):246–252.
  • Rosenberger P, Schwab JM, Mirakaj V, et al. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol. 2009;10(2):195–202.
  • Estoppey J, Léger B, Vuistiner P, Sartori C, Kayser B. Low- and high-altitude cortisol awakening responses differ between AMS-prone and AMS-resistant mountaineers. High Alt Med Biol. 2019;20(4):344–351.
  • Kumar R, Pasha Q, Khan AP, Gupta V. Renin angiotensin aldosterone system and ACE I/D gene polymorphism in high-altitude pulmonary edema. Aviat Space Environ Med. 2004;75(11):981–983.
  • Schiffer L, Barnard L, Baranowski ES, et al. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: a comprehensive review. J Steroid Biochem Mol Biol. 2019;194:105439.
  • Charu R, Stobdan T, Ram RB, et al. Susceptibility to high altitude pulmonary oedema: role of ACE and ET-1 polymorphisms. Thorax. 2006;61(11):1011–1012.
  • Zheng Y, Huang J. Angiotensin-converting enzyme gene insertion/deletion polymorphism and high-altitude pulmonary edema: an updated meta-analysis. J Renin-Angiotensin-Aldosterone Syst. 2020;21(1):1470320319900039.
  • Zhu X, Bouzekri N, Southam L, et al. Linkage and association analysis of angiotensin I-converting enzyme (ACE)-gene polymorphisms with ACE concentration and blood pressure. Am J Hum Genet. 2001;68(5):1139–1148.
  • Luo Y, Chen Y, Zhang Y, Zhou Q, Gao Y. Association of endothelial nitric oxide synthase (eNOS) G894T polymorphism with high altitude pulmonary edema susceptibility: a meta-analysis. Wilderness Environ Med. 2012;23(3):270–274.
  • Srivastava S, Bhagi S, Kumari B, Chandra K, Sarkar S, Ashraf MZ. Association of polymorphisms in angiotensin and aldosterone synthase genes of the renin-angiotensin-aldosterone system with high-altitude pulmonary edema. J Renin-Angiotensin-Aldosterone Syst. 2012;13(1):155–160.
  • Hotta J, Hanaoka M, Droma Y, Katsuyama Y, Ota M, Kobayashi T. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest. 2004;126(3):825–830.
  • Qi Y, Niu WQ, Zhu TC, et al. Genetic interaction of Hsp70 family genes polymorphisms with high-altitude pulmonary edema among Chinese railway constructors at altitudes exceeding 4000 meters. Clin Chim Acta. 2009;405(1–2):17–22.
  • Hanaoka M, Kubo K, Yamazaki Y, et al. Association of high-altitude pulmonary edema with the major histocompatibility complex. Circulation. 1998;97(12):1124–1128.
  • Gabry AL, Ledoux X, Mozziconacci M, Martin C. High-altitude pulmonary edema at moderate altitude (< 2400 m; 7870 feet): a series of 52 patients. Chest. 2003;123(1):49–53.
  • Jefcoate CR, Lee J. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. J Mol Endocrinol. 2018;60(4):R213–r235.
  • Turcu AF, Auchus RJ. Adrenal steroidogenesis and congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 2015;44(2):275–296.
  • Swart P, Lombard N, Swart AC, et al. Ovine steroid 17α-hydroxylase cytochrome P450: characteristics of the hydroxylase and lyase activities of the adrenal cortex enzyme. Arch Biochem Biophys. 2003;409(1):145–152.
  • Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol. 2012;350(2):151–162.
  • Yong Y, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005;15(2):97–98.
  • Luo Y, Gao W, Chen Y, Liu F, Gao Y. Rare mitochondrial DNA polymorphisms are associated with high altitude pulmonary edema (HAPE) susceptibility in Han Chinese. Wilderness Environ Med. 2012;23(2):128–132.
  • Saxena S, Kumar R, Madan T, Gupta V, Muralidhar K, Sarma PU. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest. 2005;128(3):1611–1619.
  • Stobdan T, Kumar R, Mohammad G, et al. Probable role of beta2-adrenergic receptor gene haplotype in high-altitude pulmonary oedema. Respirology (Carlton, Vic). 2010;15(4):651–658.
  • Zhang Y, Liu T, Wang J, et al. Cellinker: a platform of ligand–receptor interactions for intercellular communication analysis. Bioinformatics. 2021;37(14):2025–2032.
  • Thomas JL, Boswell EL, Scaccia LA, Pletnev V, Umland TC. Identification of key amino acids responsible for the substantially higher affinities of human type 1 3beta-hydroxysteroid dehydrogenase/isomerase (3beta-HSD1) for substrates, coenzymes, and inhibitors relative to human 3beta-HSD2. J Biol Chem. 2005;280(22):21321–21328.
  • Rosmond R, Chagnon M, Bouchard C, Björntorp P. Polymorphism in exon 4 of the human 3 beta-hydroxysteroid dehydrogenase type I gene (HSD3B1) and blood pressure. Biochem Biophys Res Commun. 2002;293(1):629–632.
  • Shimodaira M, Nakayama T, Sato N, et al. Association of HSD3B1 and HSD3B2 gene polymorphisms with essential hypertension, aldosterone level, and left ventricular structure. Eur J Endocrinol. 2010;163(4):671–680.
  • Van Den Akker EL, Koper JW, Boehmer AL, et al. Differential inhibition of 17alpha-hydroxylase and 17,20-lyase activities by three novel missense CYP17 mutations identified in patients with P450c17 deficiency. J Clin Endocrinol Metab. 2002;87(12):5714–5721.
  • Feigelson HS, Shames LS, Pike MC, Coetzee GA, Stanczyk FZ, Henderson BE. Cytochrome P450c17alpha gene (CYP17) polymorphism is associated with serum estrogen and progesterone concentrations. Cancer Res. 1998;58(4):585–587.
  • Li L, Gu ZP, Bo QM, Wang D, Yang XS, Cai GH. Association of CYP17A1 gene −34T/C polymorphism with polycystic ovary syndrome in Han Chinese population. Gynecol Endocrinol. 2015;31(1):40–43.
  • Surekha D, Sailaja K, Rao DN, Padma T, Raghunadharao D, Vishnupriya S. Association of a CYP17 gene polymorphism with development of breast cancer in India. Asian Pac J Cancer Prev. 2010;11(6):1653–1657.
  • Xu J, Yang YZ, Tang F, et al. CYP17A1 and CYP2E1 variants associated with high altitude polycythemia in Tibetans at the Qinghai-Tibetan Plateau. Gene. 2015;566(2):257–263.
  • Caroccia B, Vanderriele PE, Seccia TM, et al. Aldosterone and cortisol synthesis regulation by angiotensin-(1-7) and angiotensin-converting enzyme 2 in the human adrenal cortex. J Hypertens. 2021;39(8):1577–1585.
  • Davies E, Kenyon CJ. CYP11B2 polymorphisms and cardiovascular risk factors. J Hypertens. 2003;21(7):1249–1253.
  • Zhang GX, Wang BJ, Ouyang JZ, et al. Polymorphisms in CYP11B2 and CYP11B1 genes associated with primary hyperaldosteronism. Hypertension Res. 2010;33(5):478–484.
  • Chu M, Wu S, Wang W, et al. miRNA sequencing reveals miRNA-4508 from peripheral blood lymphocytes as potential diagnostic biomarker for silica-related pulmonary fibrosis: a multistage study. Respirology (Carlton, Vic). 2020;25(5):511–517.
  • Hobbs BD, de Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49(3):426–432.
  • Hobbs BD, Putman RK, Araki T, et al. Overlap of genetic risk between interstitial lung abnormalities and idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2019;200(11):1402–1413.