139
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Identification of a Four-Gene Signature for Determining the Prognosis of Papillary Thyroid Carcinoma by Integrated Bioinformatics Analysis

, , , & ORCID Icon
Pages 1147-1160 | Published online: 04 Feb 2022

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. doi:10.3322/caac.21654
  • Zou M, Baitei EY, Alzahrani AS, et al. Concomitant RAS, RET/ PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma. Thyroid. 2014;24(8):1256–1266. doi:10.1089/thy.2013.0610
  • Lundgren CI, Hall P, Dickman PW, et al. Clinically significant prognostic factors for differentiated thyroid carcinoma: a population-based, nested case-control study. Cancer-Am Cancer Soc. 2006;106(3):524–531. doi:10.1002/cncr.21653
  • Grant CS. Papillary thyroid cancer: strategies for optimal individualized surgical management. Clin Ther. 2014;36(7):1117–1126. doi:10.1016/j.clinthera.2014.03.016
  • Nath MC, Erickson LA. Aggressive variants of papillary thyroid carcinoma: hobnail, tall cell, columnar, and solid. Adv Anat Pathol. 2018;25(3):172–179. doi:10.1097/PAP.0000000000000184
  • Sywak M, Pasieka JL, Ogilvie T. A review of thyroid cancer with intermediate differentiation. J Surg Oncol. 2004;86(1):44–54. doi:10.1002/jso.20044
  • Regalbuto C, Malandrino P, Tumminia A, et al. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid. 2011;21(4):383–389. doi:10.1089/thy.2010.0331
  • Lam AK, Lo CY. Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution. Ann Surg Oncol. 2006;13(2):176–181. doi:10.1245/ASO.2006.03.062
  • Vuong HG, Kondo T, Pham TQ, et al. Prognostic significance of diffuse sclerosing variant papillary thyroid carcinoma: a systematic review and meta-analysis. Eur J Endocrinol. 2017;176(4):433–441. doi:10.1530/EJE-16-0863
  • Malandrino P, Russo M, Regalbuto C, et al. Outcome of the diffuse sclerosing variant of papillary thyroid cancer: a meta-analysis. Thyroid. 2016;26(9):1285–1292. doi:10.1089/thy.2016.0168
  • Axelsson TA, Hrafnkelsson J, Olafsdottir EJ, et al. Tall cell variant of papillary thyroid carcinoma: a population-based study in Iceland. Thyroid. 2015;25(2):216–220. doi:10.1089/thy.2014.0075
  • Liu Z, Zeng W, Chen T, et al. A comparison of the clinicopathological features and prognoses of the classical and the tall cell variant of papillary thyroid cancer: a meta-analysis. Oncotarget. 2017;8(4):6222–6232. doi:10.18632/oncotarget.14055
  • Longheu A, Canu GL, Cappellacci F, et al. Tall cell variant versus conventional papillary thyroid carcinoma: a retrospective analysis in 351 consecutive patients. J Clin Med. 2020;10(1). doi:10.3390/jcm10010070
  • Munari E, Mariotti FR, Quatrini L, et al. PD-1/PD-L1 in cancer: pathophysiological, diagnostic and therapeutic aspects. Int J Mol Sci. 2021;22(10). doi:10.3390/ijms22105123
  • Girolami I, Pantanowitz L, Mete O, et al. Programmed Death-Ligand 1 (PD-L1) is a potential biomarker of disease-free survival in papillary thyroid carcinoma: a systematic review and meta-analysis of PD-L1 immunoexpression in follicular epithelial derived thyroid carcinoma. Endocr Pathol. 2020;31(3):291–300. doi:10.1007/s12022-020-09630-5
  • Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
  • Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–395. doi:10.1002/(sici)1097-0258(19970228)16:4<385:aid-sim380>3.0.co;2-3
  • Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.
  • Robin X, Turck N, Hainard A, et al. PROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011:1277. doi:10.1186/1471-2105-12-77
  • Kopetz S, Tabernero J, Rosenberg R, et al. Genomic classifier coloprint predicts recurrence in stage II colorectal cancer patients more accurately than clinical factors. Oncologist. 2015;20(2):127–133. doi:10.1634/theoncologist.2014-0325
  • Li X, Xie M, Yin S, et al. Identification and validation of a six immune-related genes signature for predicting prognosis in patients with stage II colorectal cancer. Front Genet. 2021:12666003. doi:10.3389/fgene.2021.666003
  • Shen Y, Dong S, Liu J, et al. Identification of potential biomarkers for thyroid cancer using bioinformatics strategy: a study based on GEO datasets. Biomed Res Int. 2020:20209710421. doi:10.1155/2020/9710421
  • Liu L, He C, Zhou Q, et al. Identification of key genes and pathways of thyroid cancer by integrated bioinformatics analysis. J Cell Physiol. 2019;234(12):23647–23657. doi:10.1002/jcp.28932
  • Zhang B, Chen Z, Wang Y, et al. Integrated bioinformatics analysis for the identification of key genes and signaling pathways in thyroid carcinoma. Exp Ther Med. 2021;21(4):298. doi:10.3892/etm.2021.9729
  • Pan Y, Wu L, He S, et al. Identification of hub genes in thyroid carcinoma to predict prognosis by integrated bioinformatics analysis. Bioengineered. 2021;12(1):2928–2940. doi:10.1080/21655979.2021.1940615
  • Ren H, Liu X, Li F, et al. Identification of a six gene prognosis signature for papillary thyroid cancer using multi-omics methods and bioinformatics analysis. Front Oncol. 2021;11:624421. doi:10.3389/fonc.2021.624421
  • Wan Y, Zhang X, Leng H, et al. Identifying hub genes of papillary thyroid carcinoma in the TCGA and GEO database using bioinformatics analysis. Peerj. 2020;8:e9120. doi:10.7717/peerj.9120
  • Zhang S, Wang Q, Han Q, et al. Identification and analysis of genes associated with papillary thyroid carcinoma by bioinformatics methods. Biosci Rep. 2019;39(4). doi:10.1042/BSR20190083
  • Liu Y, Gao S, Jin Y, et al. Bioinformatics analysis to screen key genes in papillary thyroid carcinoma. Oncol Lett. 2020;19(1):195–204. doi:10.3892/ol.2019.11100
  • Faiyaz UHM, King LM, Krakow D, et al. Mutations in orthologous genes in human spondyloepimetaphyseal dysplasia and the brachymorphic mouse. Nat Genet. 1998;20(2):157–162. doi:10.1038/2458
  • Xu ZH, Freimuth RR, Eckloff B, et al. Human 3’-phosphoadenosine 5’-phosphosulfate synthetase 2 (PAPSS2) pharmacogenetics: gene resequencing, genetic polymorphisms and functional characterization of variant allozymes. Pharmacogenetics. 2002;12(1):11–21. doi:10.1097/00008571-200201000-00003
  • Ibeawuchi C, Schmidt H, Voss R, et al. Exploring prostate cancer genome reveals simultaneous losses of PTEN, FAS and PAPSS2 in patients with PSA recurrence after radical prostatectomy. Int J Mol Sci. 2015;16(2):3856–3869. doi:10.3390/ijms16023856
  • Xu P, Xi Y, Zhu J, et al. Intestinal sulfation is essential to protect against colitis and colonic carcinogenesis. Gastroenterology. 2021;161(1):271–286. doi:10.1053/j.gastro.2021.03.048
  • Steiglitz BM, Keene DR, Greenspan DS. PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. J Biol Chem. 2002;277(51):49820–49830. doi:10.1074/jbc.M209891200
  • Wu ZH, Zhou T, Sun HY. DNA methylation-based diagnostic and prognostic biomarkers of nasopharyngeal carcinoma patients. Medicine. 2020;99(24):e20682. doi:10.1097/MD.0000000000020682
  • Garlanda C, Bottazzi B, Magrini E, et al. PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiol Rev. 2018;98(2):623–639. doi:10.1152/physrev.00016.2017
  • Rubino M, Kunderfranco P, Basso G, et al. Epigenetic regulation of the extrinsic oncosuppressor PTX3 gene in inflammation and cancer. Oncoimmunology. 2017;6(7):e1333215. doi:10.1080/2162402X.2017.1333215
  • Gordon KJ, Dong M, Chislock EM, et al. Loss of type III transforming growth factor beta receptor expression increases motility and invasiveness associated with epithelial to mesenchymal transition during pancreatic cancer progression. Carcinogenesis. 2008;29(2):252–262. doi:10.1093/carcin/bgm249
  • Zhang S, Sun WY, Wu JJ, et al. Decreased expression of the type III TGF-beta receptor enhances metastasis and invasion in hepatocellullar carcinoma progression. Oncol Rep. 2016;35(4):2373–2381. doi:10.3892/or.2016.4615
  • Hempel N, How T, Dong M, et al. Loss of betaglycan expression in ovarian cancer: role in motility and invasion. Cancer Res. 2007;67(11):5231–5238. doi:10.1158/0008-5472.CAN-07-0035
  • Mammadova-Bach E, Gil-Pulido J, Sarukhanyan E, et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood. 2020;135(14):1146–1160. doi:10.1182/blood.2019002649
  • Miguchi M, Hinoi T, Shimomura M, et al. Gasdermin c is upregulated by inactivation of transforming growth factor beta receptor type II in the presence of mutated apc, promoting colorectal cancer proliferation. PLoS One. 2016;11(11):e166422. doi:10.1371/journal.pone.0166422
  • Tu CF, Wu MY, Lin YC, et al. FUT8 promotes breast cancer cell invasiveness by remodeling TGF-beta receptor core fucosylation. Breast Cancer Res. 2017;19(1):111. doi:10.1186/s13058-017-0904-8
  • Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. Int Rev Cell Mol Biol. 2019;347:39–103. doi:10.1016/bs.ircmb.2019.05.001