175
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Gene Expression Network Analysis Identifies Potential Targets for Prevention of Preeclampsia

, ORCID Icon, , &
Pages 1023-1032 | Published online: 02 Feb 2022

References

  • Di Renzo GC, Fonseca E, Gratacos E; FIGO Working Group on Good Clinical Practice in Maternal-Fetal Medicine. Good clinical practice advice: first trimester screening and prevention of pre-eclampsia in singleton pregnancy. Int J Gynaecol Obstet. 2019;144(3):325–329. doi:10.1002/ijgo.12741
  • Umesawa M, Kobashi G. Epidemiology of hypertensive disorders in pregnancy: prevalence, risk factors, predictors and prognosis. Hypertens Res. 2017;40(3):213–220. doi:10.1038/hr.2016.126
  • World Health Organization. WHO recommendations: policy of interventionist versus expectant management of severe pre-eclampsia before term. Geneva; 2018.
  • Garovic VD, White WM, Vaughan L, et al. Incidence and long-term outcomes of hypertensive disorders of pregnancy. J Am Coll Cardiol. 2020;75(18):2323–2334. doi:10.1016/j.jacc.2020.03.028
  • Adank MC, Hussainali RF, Oosterveer LC, et al. Hypertensive disorders of pregnancy and cognitive impairment: a prospective cohort study. Neurology. 2021;96(5):e709–e18. doi:10.1212/WNL.0000000000011363
  • Davies EL, Bell JS, Bhattacharya S. Preeclampsia and preterm delivery: a population-based case-control study. Hypertens Pregnancy. 2016;35(4):510–519. doi:10.1080/10641955.2016.1190846
  • Thornburg KL, Drake R, Valent AM. Maternal hypertension affects heart growth in offspring. J Am Heart Assoc. 2020;9(9):e016538. doi:10.1161/JAHA.120.016538
  • Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30 Suppl A:S32–7. doi:10.1016/j.placenta.2008.11.009
  • Redman C. The six stages of pre-eclampsia. Pregnancy Hypertens. 2014;4(3):246. doi:10.1016/j.preghy.2014.04.020
  • Kaartokallio T, Cervera A, Kyllonen A, et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing. Sci Rep. 2015;5:14107. doi:10.1038/srep14107
  • Ren Z, Gao Y, Gao Y, et al. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Theranostics. 2021;11(10):5028–5044. doi:10.7150/thno.56141
  • Gong S, Gaccioli F, Dopierala J, et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12(1):2639. doi:10.1038/s41467-021-22695-y
  • Rasmussen M, Reddy M, Nolan R, et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature. 2022;601(7893):422–427. doi:10.1038/s41586-021-04249-w
  • Xu H, Xie Y, Sun Y, et al. Integrated analysis of multiple microarray studies to identify potential pathogenic gene modules in preeclampsia. Exp Mol Pathol. 2021;120:104631. doi:10.1016/j.yexmp.2021.104631
  • Tenorio MB, Ferreira RC, Moura FA, et al. Cross-talk between oxidative stress and inflammation in preeclampsia. Oxid Med Cell Longev. 2019;2019:8238727. doi:10.1155/2019/8238727
  • Rong M, Yan X, Zhang H, et al. Dysfunction of decidual macrophages is a potential risk factor in the occurrence of preeclampsia. Front Immunol. 2021;12:655655. doi:10.3389/fimmu.2021.655655
  • Gebara N, Correia Y, Wang K, et al. Angiogenic properties of placenta-derived extracellular vesicles in normal pregnancy and in preeclampsia. Int J Mol Sci. 2021;22(10):5402. doi:10.3390/ijms22105402
  • Scaife PJ, Simpson A, Kurlak LO, et al. Increased placental cell senescence and oxidative stress in women with pre-eclampsia and normotensive post-term pregnancies. Int J Mol Sci. 2021;22(14):7295. doi:10.3390/ijms22147295
  • Hu X, Zhang L. Uteroplacental circulation in normal pregnancy and preeclampsia: functional adaptation and maladaptation. Int J Mol Sci. 2021;22(16):8622. doi:10.3390/ijms22168622
  • Nakashima A, Shima T, Tsuda S, et al. Aggrephagy deficiency in the placenta: a new pathogenesis of preeclampsia. Int J Mol Sci. 2021;22(5):2432. doi:10.3390/ijms22052432
  • Matsubara K, Matsubara Y, Uchikura Y, et al. Pathophysiology of preeclampsia: the role of exosomes. Int J Mol Sci. 2021;22(5):2572. doi:10.3390/ijms22052572
  • Qin L, Yang Q, Fei Z, et al. Expression of lncRNA TINCR in the placenta of patients with pre-eclampsia and its effect on the biological behaviours of trophoblasts. Zygote. 2021:1–9. doi:10.1017/S0967199421000290
  • Li XL, Zhang L, Hou B, et al. Expression of lncRNA MIR210HG in preeclampsia placental tissue and its functional analysis. Zhonghua Fu Chan Ke Za Zhi. 2021;56(6):425–433. doi:10.3760/cma.j.cn112141-20210118-00029
  • Lekva T, Roland MCP, Estensen ME, et al. Dysregulated non-coding telomerase RNA component and associated exonuclease XRN1 in leucocytes from women developing preeclampsia-possible link to enhanced senescence. Sci Rep. 2021;11(1):19735. doi:10.1038/s41598-021-99140-z
  • He J, Chen M, Xu J, et al. Identification and characterization of Piwi-interacting RNAs in human placentas of preeclampsia. Sci Rep. 2021;11(1):15766. doi:10.1038/s41598-021-95307-w
  • Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17. doi:10.2202/1544-6115.1128
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. doi:10.1186/1471-2105-9-559
  • Serebrova VN, Trifonova EA, Gabidulina TV, et al. [Detection of novel genetic markers of susceptibility to preeclampsia based on an analysis of the regulatory genes in the placental tissue]. Mol Biol (Mosk). 2016;50(5):870–879. Russian. doi:10.1134/S0026893316050162
  • Liu S, Jiang S, Huang L, et al. Expression of SASH1 in preeclampsia and its effects on human trophoblast. Biomed Res Int. 2020;2020:5058260. doi:10.1155/2020/5058260
  • Radulovich N, Pham NA, Strumpf D, et al. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma. Mol Cancer. 2010;9:24. doi:10.1186/1476-4598-9-24
  • Wang J, He Y, Zhang J-W, et al. SASH1 may interact with REK signaling pathways through MAP2K2 and MAP4K4. Basic Clin Med. 2014;34(11):1530–1536.
  • Chen CP, Huang JP, Chu TY, et al. Human placental multipotent mesenchymal stromal cells modulate trophoblast migration via Rap1 activation. Placenta. 2013;34(10):913–923. doi:10.1016/j.placenta.2013.06.311
  • Zhou G, Li Z, Sun S, et al. TGF-beta1 alleviates HgCl2 induced apoptosis via P38 MAPK signaling pathway in human trophoblast cells. Toxicol in Vitro. 2019;61:104626. doi:10.1016/j.tiv.2019.104626
  • Li X, Wang Z, Liu G, et al. EIF3D promotes the progression of preeclampsia by inhibiting of MAPK/ERK1/2 pathway. Reprod Toxicol. 2021;105:166–174. doi:10.1016/j.reprotox.2021.09.006
  • Li MQ, Hou XF, Shao J, et al. The DSCs-expressed CD82 controls the invasiveness of trophoblast cells via integrinbeta1/MAPK/MAPK3/1 signaling pathway in human first-trimester pregnancy. Biol Reprod. 2010;82(5):968–979. doi:10.1095/biolreprod.109.080739
  • Tong J, Niu Y, Chen ZJ, et al. Comparison of the transcriptional profile in the decidua of early-onset and late-onset pre-eclampsia. J Obstet Gynaecol Res. 2020;46(7):1055–1066. doi:10.1111/jog.14257
  • Tsai K, Tullis B, Jensen T, et al. Differential expression of mTOR related molecules in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients. Reprod Biol. 2021;21(2):100503. doi:10.1016/j.repbio.2021.100503
  • Saad AF, Diken ZM, Kechichian TB, et al. Pravastatin effects on placental prosurvival molecular pathways in a mouse model of preeclampsia. Reprod Sci. 2016;23(11):1593–1599. doi:10.1177/1933719116648218
  • Saif J, Ahmad S, Rezai H, et al. Hydrogen sulfide releasing molecule MZe786 inhibits soluble Flt-1 and prevents preeclampsia in a refined RUPP mouse model. Redox Biol. 2021;38:101814. doi:10.1016/j.redox.2020.101814
  • Gao J, Shen J, Jiang Y, et al. Value of second trimester maternal serum sFlt-1, PlGF and their ratio in the prediction of preeclampsia. Zhonghua Fu Chan Ke Za Zhi. 2014;49(1):22–25.
  • Perales A, Delgado JL, De La Calle M, et al. sFlt-1/PlGF for prediction of early-onset pre-eclampsia: STEPS (Study of Early Pre-eclampsia in Spain). Ultrasound Obstet Gynecol. 2017;50(3):373–382. doi:10.1002/uog.17373
  • Mccarey C, Baert J, Mathey MP, et al. [Clinical value of angiogenic and anti-angiogenic marker assay in preeclampsia]. Rev Med Suisse. 2020;16(712):2031–2036. French
  • Zeisler H, Llurba E, Chantraine FJ, et al. Soluble fms-like tyrosine kinase-1 to placental growth factor ratio: ruling out pre-eclampsia for up to 4 weeks and value of retesting. Ultrasound Obstet Gynecol. 2019;53(3):367–375. doi:10.1002/uog.19178
  • Saleh L, Verdonk K, Jan Danser AH, et al. The sFlt-1/PlGF ratio associates with prolongation and adverse outcome of pregnancy in women with (suspected) preeclampsia: analysis of a high-risk cohort. Eur J Obstet Gynecol Reprod Biol. 2016;199:121–126. doi:10.1016/j.ejogrb.2016.02.013
  • Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1: plGFRatio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22. doi:10.1056/NEJMoa1414838
  • Verlohren S, Herraiz I, Lapaire O, et al. New gestational phase-specific cutoff values for the use of the soluble fms-like tyrosine kinase-1/placental growth factor ratio as a diagnostic test for preeclampsia. Hypertension. 2014;63(2):346–352. doi:10.1161/HYPERTENSIONAHA.113.01787
  • Rana S, Hacker MR, Modest AM, et al. Circulating angiogenic factors and risk of adverse maternal and perinatal outcomes in twin pregnancies with suspected preeclampsia. Hypertension. 2012;60(2):451–458. doi:10.1161/HYPERTENSIONAHA.112.195065
  • Liu X, Deng Q, Luo X, et al. Oxidative stress-induced Gadd45alpha inhibits trophoblast invasion and increases sFlt1/sEng secretions via p38 MAPK involving in the pathology of pre-eclampsia. J Matern Fetal Neonatal Med. 2016;29(23):3776–3785. doi:10.3109/14767058.2016.1144744
  • Shibuya M, Matsui H, Sasagawa T, et al. A simple detection method for the serum sFLT1 protein in preeclampsia. Sci Rep. 2021;11(1):20613. doi:10.1038/s41598-021-00152-6
  • Sun Y, Tan L, Neuman RI, et al. Megalin, proton pump inhibitors and the renin-angiotensin system in healthy and pre-eclamptic placentas. Int J Mol Sci. 2021;22(14):7407.
  • Zuo Q, Zou Y, Huang S, et al. Aspirin reduces sFlt-1-mediated apoptosis of trophoblast cells in preeclampsia. Mol Hum Reprod. 2021;27(1). doi:10.1093/molehr/gaaa089