154
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Utility of Monocyte Expression of HLA-DR versus T Lymphocyte Frequency in the Assessment of COVID-19 Outcome

ORCID Icon, , , , , , ORCID Icon, ORCID Icon & show all
Pages 5073-5087 | Published online: 19 May 2022

References

  • Worobey M. Dissecting the early COVID-19 cases in Wuhan. Science. 2021;374:1202–1204. doi:10.1126/science.abm4454
  • Gosangi B, Rubinowitz AN, Irugu D, Gange C, Bader A, Cortopassi I. COVID-19 ARDS: a review of imaging features and overview of mechanical ventilation and its complications. Emerg Radiol. 2022;29(1):23–34. doi:10.1007/s10140-021-01976-5
  • Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934–943. doi:10.1001/jamainternmed.2020.0994
  • Michalski JE, Kurche JS, Schwartz DA. From ARDS to pulmonary fibrosis: the next phase of the COVID-19 pandemic? Transl Res. 2022;241:13–24. doi:10.1016/j.trsl.2021.09.001
  • André S, Picard M, Cezar R, et al. T cell apoptosis characterizes severe Covid-19 disease. Cell Death Differ. 2022;22:1–14.
  • Napoli C, Benincasa G, Criscuolo C, Faenza M, Liberato C, Rusciano M. Immune reactivity during COVID-19: implications for treatment. Immunol Lett. 2021;231:28–34.
  • Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M. Immunology of COVID-19: current state of the science. Immunity. 2020;52:910–941. doi:10.1016/j.immuni.2020.05.002
  • Gatti A, Radrizzani D, Viganò P, Mazzone A, Brando B. Decrease of non-classical and intermediate monocyte subsets in severe acute SARS-CoV-2 infection. Cytometry A. 2020;97(9):887–890. doi:10.1002/cyto.a.24188
  • Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol. 2020;92(4):424–432. doi:10.1002/jmv.25685
  • Zmijewski JW, Pittet JF. Human leukocyte antigen-DR deficiency and immunosuppression-related end-organ failure in SARS-CoV2 infection. Anesth Analg. 2020;131(4):989–992. doi:10.1213/ANE.0000000000005140
  • Rubina K, Shmakova A, Shabanov A, et al. Novel prognostic determinants of COVID-19-related mortality: a pilot study on severely ill patients in Russia. PLoS One. 2022;17(2):e0264072. doi:10.1371/journal.pone.0264072
  • Moratto D, Chiarini M, Giustini V, et al. Flow cytometry identifies risk factors and dynamic changes in patients with COVID-19. J Clin Immunol. 2020;40(7):970–973. doi:10.1007/s10875-020-00806-6
  • Peñaloza HF, Lee JS, Ray P. Neutrophils and lymphopenia, an unknown axis in severe COVID-19 disease. PLoS Pathog. 2021;17(9):e1009850. doi:10.1371/journal.ppat.1009850
  • Arunachalam PS, Wimmers F, Mok CKP, et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science. 2020;369(6508):1210–1220. doi:10.1126/science.abc6261
  • Masoud H, Elassal G, Zaky S, et al. Management protocol for COVID-19 patients, version 1.4; 2020. Egypt: Ministry of Health and Population (MOHP). Available from: https://www.scribd.com/document/484116012/MoHP-Protocol-for-COVID19. Accessed May 13, 2022.
  • Stawski R, Nowak D, Perdas E. Cell-free DNA: potential application in COVID-19 diagnostics and management. Viruses. 2022;14(2):321. doi:10.3390/v14020321
  • Astbury S, Reynolds CJ, Butler DK, et al. COVIDsortium Investigators*. HLA-DR polymorphism in SARS-CoV-2 infection and susceptibility to symptomatic COVID-19. Immunology. 2022;166:68–77. doi:10.1111/imm.13450
  • Schulte-Schrepping J, Reusch N, Paclik D, et al. Deutsche COVID-19 OMICS initiative (DeCOI). Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell. 2020;182(6):1419–1440.e23. doi:10.1016/j.cell.2020.08.001
  • Bonnet B, Cosme J, Dupuis C, et al. Severe COVID-19 is characterized by the co-occurrence of moderate cytokine inflammation and severe monocyte dysregulation. EBioMedicine. 2021;73:103622. doi:10.1016/j.ebiom.2021.103622
  • de Candia P, Prattichizzo F, Garavelli S, Matarese G. T cells: warriors of SARS-CoV-2 infection. Trends Immunol. 2021;42(1):18–30. doi:10.1016/j.it.2020.11.002
  • Cizmecioglu A, Akay Cizmecioglu H, Goktepe MH, et al. Apoptosis-induced T-cell lymphopenia is related to COVID-19 severity. J Med Virol. 2021;93(5):2867–2874. doi:10.1002/jmv.26742
  • Taghiloo S, Aliyali M, Abedi S, et al. Apoptosis and immunophenotyping of peripheral blood lymphocytes in Iranian COVID-19 patients: clinical and laboratory characteristics. J Med Virol. 2021;93(3):1589–1598. doi:10.1002/jmv.26505
  • Hammad R, Eldosoky MA, Fouad SH, et al. Circulating cell-free DNA, peripheral lymphocyte subsets alterations and neutrophil lymphocyte ratio in assessment of COVID-19 severity. Innate Immun. 2021;27(3):240–250. doi:10.1177/1753425921995577
  • Bg S, Gosavi S, Ananda Rao A, et al. Neutrophil-to-lymphocyte lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios: prognostic significance in COVID-19. Cureus. 2021;13(1):e12622. doi:10.7759/cureus.12622
  • Kalabin A, Mani VRK, Valdivieso SC, Donaldson B. Role of neutrophil-to-lymphocyte, lymphocyte-to-monocyte and platelet-to-lymphocyte ratios as predictors of disease severity in COVID-19 patients. Infez Med. 2021;29(1):46–53.
  • Wang G, Wu C, Zhang Q, et al. C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect Dis. 2020;7:ofaa153. doi:10.1093/ofid/ofaa153
  • Huang I, Pranata R, Lim MA, et al. The C-reactive protein, procalcitonin, D-dimer, and ferritin in severe coronavirus disease-2019: a meta-analysis. Adv Respir Dis. 2020;14:1753466620937175.
  • Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062. doi:10.1016/S0140-6736(20)30566-3
  • Montiel-Cervantes LA, Medina G, Pilar Cruz-Domínguez M, et al. Camacho-sandoval R.Isr poor survival in COVID-19 associated with lymphopenia and higher neutrophile-lymphocyte ratio. Med Assoc J. 2021;23(3):153–159.
  • Zhao Y, Nie HX, Hu K, et al. Abnormal immunity of non-survivors with COVID-19: predictors for mortality. Infect Dis Poverty. 2020;9(1):108. doi:10.1186/s40249-020-00723-1
  • Palojärvi A, Petäjä J, Siitonen S, et al. Low monocyte HLA-DR expression as an indicator of immunodepression in very low birth weight infants. Pediatr Res. 2013;73:469–475. doi:10.1038/pr.2012.199
  • Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. doi:10.1016/j.chom.2020.04.009
  • Benlyamani I, Venet F, Coudereau R, Gossez M, Monneret G. Monocyte HLA-DR measurement by flow cytometry in COVID-19 patients: an interim review. Cytometry A. 2020;97(12):1217–1221. doi:10.1002/cyto.a.24249
  • Payen D, Cravat M, Maadadi H, et al. Study of immune cells in severe COVID-19 patients. Front Immunol. 2020;11:580250. doi:10.3389/fimmu.2020.580250
  • Falck-Jones S, Vangeti S, Yu M, et al. Functional monocytic myeloid-derived suppressor cells increase in blood but not airways and predict COVID-19 severity J Clin Invest. 2021;131(6):e144734.
  • Grant RA, Morales-Nebreda L, Markov NS, et al.; NU SCRIPT Study Investigators. Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia. Nature. 2021;590(7847):635–641. doi:10.1038/s41586-020-03148-w
  • He R, Lu Z, Zhang L, et al. The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol. 2020;127:104361. doi:10.1016/j.jcv.2020.104361
  • Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020;16(3):434–440. doi:10.1007/s12015-020-09976-7