108
Views
1
CrossRef citations to date
0
Altmetric
Original Research

The Association of Axial Length with Macular Microvascular Changes in Chinese Diabetic Retinopathy Patients

, , , , , , & show all
Pages 3895-3902 | Published online: 08 Apr 2022

References

  • Sun Z, Yang D, Tang Z, Ng DS, Cheung CY. Optical coherence tomography angiography in diabetic retinopathy: an updated review. Eye. 2021;35(1):149–161. doi:10.1038/s41433-020-01233-y
  • Wang Q, Wang YX, Wu SL, et al. Ocular axial length and diabetic retinopathy: the kailuan eye study. Invest Ophthalmol Vis Sci. 2019;60(10):3689–3695. doi:10.1167/iovs.19-27531
  • Fu Y, Geng D, Liu H, Che H. Myopia and/or longer axial length are protective against diabetic retinopathy: a meta-analysis. Acta Ophthalmol. 2016;94(4):346–352. doi:10.1111/aos.12908
  • Man RE, Sasongko MB, Sanmugasundram S, et al. Longer axial length is protective of diabetic retinopathy and macular edema. Ophthalmology. 2012;119(9):1754–1759. doi:10.1016/j.ophtha.2012.03.021
  • Levine ES, Moult EM, Greig EC, et al. Multiscale correlation of microvascular changes on optical coherence tomography angiography with retinal sensitivity in diabetic retinopathy. Retina. 2021;42:357–368.
  • Suciu CI, Suciu VI, Nicoara SD, Sokolovska J. Optical coherence tomography (angiography) biomarkers in the assessment and monitoring of diabetic macular edema. J Diabetes Res. 2020;2020:6655021. doi:10.1155/2020/6655021
  • Takase N, Nozaki M, Kato A, Ozeki H, Yoshida M, Ogura Y. Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina. 2015;35(11):2377–2383. doi:10.1097/IAE.0000000000000849
  • Chan TC, Wilkinson Berka JL, Deliyanti D, et al. The role of reactive oxygen species in the pathogenesis and treatment of retinal diseases. Exp Eye Res. 2020;201:108255. doi:10.1016/j.exer.2020.108255
  • Liu H, Ma Y, Xu HC, Huang LY, Zhai LY, Zhang XR. Updates on the management of ocular vasculopathies with VEGF inhibitor conbercept. Curr Eye Res. 2020;45(12):1467–1476. doi:10.1080/02713683.2020.1781193
  • Man REK, Gan ATL, Gupta P, et al. Is myopia associated with the incidence and progression of diabetic retinopathy? Am J Ophthalmol. 2019;208:226–233. doi:10.1016/j.ajo.2019.05.012
  • Bazzazi N, Akbarzadeh S, Yavarikia M, Poorolajal J, Fouladi DF. High myopia and diabetic retinopathy: a contralateral eye study in diabetic patients with high myopic anisometropia. Retina. 2017;37(7):1270–1276. doi:10.1097/IAE.0000000000001335
  • Breazzano MP, Yannuzzi LA, Spaide RF. Characterizing retinal-choroidal anastomosis in macular telangiectasia type 2 with optical coherence tomography angiography. Retina. 2020;40(1):92–98. doi:10.1097/IAE.0000000000002619
  • Man RE, Sasongko MB, Xie J, et al. Decreased retinal capillary flow is not a mediator of the protective myopia-diabetic retinopathy relationship. Invest Ophthalmol Vis Sci. 2014;55(10):6901–6907. doi:10.1167/iovs.14-15137
  • Ting DSW, Tan GSW, Agrawal R, et al. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):306–312. doi:10.1001/jamaophthalmol.2016.5877
  • Alibhai AY, De Pretto LR, Moult EM, et al. Quantification of retinal capillary nonperfusion in diabetics using wide-field optical coherence tomography angiography. Retina. 2020;40(3):412–420. doi:10.1097/IAE.0000000000002403
  • Nagaoka T, Sato E, Takahashi A, Yokota H, Sogawa K, Yoshida A. Impaired retinal circulation in patients with type 2 diabetes mellitus: retinal laser Doppler velocimetry study. Invest Ophthalmol Vis Sci. 2010;51(12):6729–6734. doi:10.1167/iovs.10-5364
  • Endo H, Kase S, Saito M, et al. Choroidal thickness in diabetic patients without diabetic retinopathy: a meta-analysis. Am J Ophthalmol. 2020;218:68–77. doi:10.1016/j.ajo.2020.05.036
  • Liu P, Zou A, Chen Q, Cheng B, Li Q. Basing on microRNA-mRNA analysis identifies microRNA in exosomes associated with wound repair of diabetic ulcers. Biocell. 2021;45(1):27–39. doi:10.32604/biocell.2021.012601
  • Liu B, Wang Y, Li T, et al. Correlation of subfoveal choroidal thickness with axial length, refractive error, and age in adult highly myopic eyes. BMC Ophthalmol. 2018;18(1):127. doi:10.1186/s12886-018-0791-5
  • Ulaganathan S, Read SA, Collins MJ, Vincent SJ. Daily axial length and choroidal thickness variations in young adults: associations with light exposure and longitudinal axial length and choroid changes. Exp Eye Res. 2019;189:107850. doi:10.1016/j.exer.2019.107850
  • Fledelius HC, Jacobsen N, Li XQ, Goldschmidt E. Choroidal thickness at age 66 years in the Danish high myopia study cohort 1948 compared with follow-up data on visual acuity over 40 years: a clinical update adding spectral domain optical coherence tomography. Acta Ophthalmol. 2018;96(1):46–50. doi:10.1111/aos.13659
  • Grudzinska E, Modrzejewska M. Modern diagnostic techniques for the assessment of ocular blood flow in myopia: current state of knowledge. J Ophthalmol. 2018;2018:4694789. doi:10.1155/2018/4694789
  • Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci. 2017;58(4):2063–2069. doi:10.1167/iovs.16-21289
  • Yang Y, Wang J, Jiang H, et al. Retinal microvasculature alteration in high myopia. Invest Ophthalmol Vis Sci. 2016;57(14):6020–6030. doi:10.1167/iovs.16-19542
  • Kim DY, Song JH, Kim YJ, et al. Asymmetric diabetic retinopathy progression in patients with axial anisometropia. Retina. 2018;38(9):1809–1815. doi:10.1097/IAE.0000000000002109
  • Russell JF, Han IC. Toward a new staging system for diabetic retinopathy using wide field swept-source optical coherence tomography angiography. Curr Diab Rep. 2021;21(9):28. doi:10.1007/s11892-021-01401-8