344
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

FNBP4 is a Potential Biomarker Associated with Cuproptosis and Promotes Tumor Progression in Hepatocellular Carcinoma

ORCID Icon, , , , & ORCID Icon
Pages 467-480 | Received 14 Dec 2022, Accepted 26 Jan 2023, Published online: 04 Feb 2023

References

  • Zhang Y, Zhang S, Liu J, et al. Identification of serum glycobiomarkers for Hepatocellular Carcinoma using lectin microarrays. Front Immunol. 2022;13:973993. doi:10.3389/fimmu.2022.973993
  • Luna-Marco C, Ubink A, Kopsida M, Heindryckx F. Endoplasmic Reticulum Stress and Metabolism in Hepatocellular Carcinoma. Am J Pathol. 2022. doi:10.1016/j.ajpath.2022.09.012
  • Cho K, Ro SW, Seo SH, et al. Genetically Engineered Mouse Models for Liver Cancer. Cancers. 2019;12(1):14. doi:10.3390/cancers12010014
  • Llovet JM, Castet F, Heikenwalder M, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19(3):151–172. doi:10.1038/s41571-021-00573-2
  • Di Federico A, Rizzo A, Carloni R, et al. Atezolizumab-bevacizumab plus Y-90 TARE for the treatment of hepatocellular carcinoma: preclinical rationale and ongoing clinical trials. Expert Opin Investig Drugs. 2022;31(4):361–369. doi:10.1080/13543784.2022.2009455
  • Viscardi G, Tralongo AC, Massari F, et al. Comparative assessment of early mortality risk upon immune checkpoint inhibitors alone or in combination with other agents across solid malignancies: a systematic review and meta-analysis. Eur J Cancer. 2022;177:175–185. doi:10.1016/j.ejca.2022.09.031
  • Li D, Toh HC, Merle P, et al. Atezolizumab plus Bevacizumab versus Sorafenib for Unresectable Hepatocellular Carcinoma: results from Older Adults Enrolled in the IMbrave150 Randomized Clinical Trial. Liver Cancer. 2022;11(6):558–571. doi:10.1159/000525671
  • Rizzo A, Ricci AD, Di Federico A, et al. Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy in Hepatocellular Carcinoma: where Do We Stand? Front Oncol. 2021;11:803133. doi:10.3389/fonc.2021.803133
  • Li J, Xie J, Wu D, et al. A pan-cancer analysis revealed the role of the SLC16 family in cancer. Channels. 2021;15(1):528–540. doi:10.1080/19336950.2021.1965422
  • Cammarota A, Zanuso V, Manfredi GF, Murphy R, Pinato DJ, Rimassa L. Immunotherapy in hepatocellular carcinoma: how will it reshape treatment sequencing? Ther Adv Med Oncol. 2023;15:17588359221148029. doi:10.1177/17588359221148029
  • Rizzo A, Nannini M, Novelli M, Dalia Ricci A, Scioscio VD, Pantaleo MA. Dose reduction and discontinuation of standard-dose regorafenib associated with adverse drug events in cancer patients: a systematic review and meta-analysis. Ther Adv Med Oncol. 2020;12:1758835920936932. doi:10.1177/1758835920936932
  • Faix J, Grosse R. Staying in shape with formins. Dev Cell. 2006;10(6):693–706. doi:10.1016/j.devcel.2006.05.001
  • Ahangar P, Cowin AJ. Reforming the Barrier: the Role of Formins in Wound Repair. Cells. 2022;11(18):2779. doi:10.3390/cells11182779
  • Chiereghin C, Robusto M, Massa V, et al. Role of Cytoskeletal Diaphanous-Related Formins in Hearing Loss. Cells. 2022;11(11):1726. doi:10.3390/cells11111726
  • Young KG, Copeland JW. Formins in cell signaling. Biochim Biophys Acta. 2010;1803(2):183–190. doi:10.1016/j.bbamcr.2008.09.017
  • Yoon BK, Hwang N, Chun KH, et al. Sp1-Induced FNBP1 Drives Rigorous 3D Cell Motility in EMT-Type Gastric Cancer Cells. Int J Mol Sci. 2021;22(13):6784. doi:10.3390/ijms22136784
  • Suman P, Mishra S, Chander H. High expression of FBP17 in invasive breast cancer cells promotes invadopodia formation. Med Oncol. 2018;35(5):71. doi:10.1007/s12032-018-1132-5
  • Depraetere V, Golstein P. WW domain-containing FBP-30 is regulated by p53. Cell Death Differ. 1999;6(9):883–889. doi:10.1038/sj.cdd.4400564
  • Song S, Zhang M, Xie P, Wang S, Wang Y. Comprehensive analysis of cuproptosis-related genes and tumor microenvironment infiltration characterization in breast cancer. Front Immunol. 2022;13:978909. doi:10.3389/fimmu.2022.978909
  • Feng W, Su S, Song C, et al. Effects of Copper Exposure on Oxidative Stress, Apoptosis, Endoplasmic Reticulum Stress, Autophagy and Immune Response in Different Tissues of Chinese Mitten Crab (Eriocheir sinensis). Antioxidants. 2022;11(10). doi:10.3390/antiox11102029
  • Siddiqui MA, Alhadlaq HA, Ahmad J, Al-Khedhairy AA, Musarrat J, Ahamed M. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS One. 2013;8(8):e69534. doi:10.1371/journal.pone.0069534
  • Kuo HW, Chen SF, Wu CC, Chen DR, Lee JH. Serum and tissue trace elements in patients with breast cancer in Taiwan. Biol Trace Elem Res. 2002;89(1):1–11. doi:10.1385/bter:89:1:1
  • Zhang X, Yang Q. Association between serum copper levels and lung cancer risk: a meta-analysis. J Int Med Res. 2018;46(12):4863–4873. doi:10.1177/0300060518798507
  • Moffett JR, Puthillathu N, Vengilote R, Jaworski DM, Namboodiri AM. Acetate Revisited: a Key Biomolecule at the Nexus of Metabolism, Epigenetics and Oncogenesis-Part 1: acetyl-CoA, Acetogenesis and Acyl-CoA Short-Chain Synthetases. Front Physiol. 2020;11:580167. doi:10.3389/fphys.2020.580167
  • Koizumi M, Fujii J, Suzuki K, et al. A marked increase in free copper levels in the plasma and liver of LEC rats: an animal model for Wilson disease and liver cancer. Free Radic Res. 1998;28(5):441–450. doi:10.3109/10715769809066881
  • Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 2022;375(6586):1254–1261. doi:10.1126/science.abf0529
  • Zhang Z, Zeng X, Wu Y, Liu Y, Zhang X, Song Z. Cuproptosis-Related Risk Score Predicts Prognosis and Characterizes the Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol. 2022;13:925618. doi:10.3389/fimmu.2022.925618
  • Peng X, Zhu J, Liu S, et al. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma. Front Immunol. 2022;13:990790. doi:10.3389/fimmu.2022.990790
  • Wang G, Xiao R, Zhao S, et al. Cuproptosis regulator-mediated patterns associated with immune infiltration features and construction of cuproptosis-related signatures to guide immunotherapy. Front Immunol. 2022;13:945516. doi:10.3389/fimmu.2022.945516
  • Chen D, Cui QC, Yang H, Dou QP. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006;66(21):10425–10433. doi:10.1158/0008-5472.Can-06-2126
  • O’Day SJ, Eggermont AM, Chiarion-Sileni V, et al. Final results of Phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J Clin Oncol. 2013;31(9):1211–1218. doi:10.1200/jco.2012.44.5585
  • Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378. doi:10.1038/s41392-022-01229-y
  • Yang JC, Hu JJ, Li YX, Luo W, Liu JZ, Ye DW. Clinical Applications of Liquid Biopsy in Hepatocellular Carcinoma. Front Oncol. 2022;12:781820. doi:10.3389/fonc.2022.781820
  • Feng H, Zhuo Y, Zhang X, et al. Tumor Microenvironment in Hepatocellular Carcinoma: key Players for Immunotherapy. J Hepatocell Carcinoma. 2022;9:1109–1125. doi:10.2147/jhc.S381764
  • Dash S, Aydin Y, Wu T. Integrated stress response in hepatitis C promotes Nrf2-related chaperone-mediated autophagy: a novel mechanism for host-microbe survival and HCC development in liver cirrhosis. Semin Cell Dev Biol. 2020;101:20–35. doi:10.1016/j.semcdb.2019.07.015
  • Shokouhian B, Aboulkheyr EH, Negahdari B, et al. Hepatogenesis and hepatocarcinogenesis: alignment of the main signaling pathways. J Cell Physiol. 2022;237(11):3984–4000. doi:10.1002/jcp.30862
  • Xie J, Zhu Z, Cao Y, Ruan S, Wang M, Shi J. Solute carrier transporter superfamily member SLC16A1 is a potential prognostic biomarker and associated with immune infiltration in skin cutaneous melanoma. Channels. 2021;15(1):483–495. doi:10.1080/19336950.2021.1953322
  • Xie J, Ruan S, Zhu Z, et al. Database mining analysis revealed the role of the putative H(+)/sugar transporter solute carrier family 45 in skin cutaneous melanoma. Channels. 2021;15(1):496–506. doi:10.1080/19336950.2021.1956226
  • Qie S, Yoshida A, Parnham S, et al. Targeting glutamine-addiction and overcoming CDK4/6 inhibitor resistance in human esophageal squamous cell carcinoma. Nat Commun. 2019;10(1):1296. doi:10.1038/s41467-019-09179-w
  • Tchakarska G, Sola B. The double dealing of cyclin D1. Cell Cycle. 2020;19(2):163–178. doi:10.1080/15384101.2019.1706903
  • Montalto FI, De Amicis F. Cyclin D1 in Cancer: a Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells. 2020;9:12. doi:10.3390/cells9122648
  • Qie S, Diehl JA. Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med. 2016;94(12):1313–1326. doi:10.1007/s00109-016-1475-3
  • Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell. 2015;163(4):811–828. doi:10.1016/j.cell.2015.10.044
  • Chen D, Sun Y, Wei Y, et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med. 2012;18(10):1511–1517. doi:10.1038/nm.2940
  • Hao Y, Chun A, Cheung K, Rashidi B, Yang X. Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem. 2008;283(9):5496–5509. doi:10.1074/jbc.M709037200
  • Lamar JM, Stern P, Liu H, Schindler JW, Jiang ZG, Hynes RO. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. Proc Natl Acad Sci U S A. 2012;109(37):E2441–2450. doi:10.1073/pnas.1212021109
  • Kim NG, Koh E, Chen X, Gumbiner BM. E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A. 2011;108(29):11930–11935. doi:10.1073/pnas.1103345108
  • Duan WJ, He RR. Cuproptosis: copper-induced regulated cell death. Sci China Life Sci. 2022;65(8):1680–1682. doi:10.1007/s11427-022-2106-6
  • Kodama H, Fujisawa C, Bhadhprasit W. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr Drug Metab. 2012;13(3):237–250. doi:10.2174/138920012799320455
  • Poznański J, Sołdacki D, Czarkowska-Pączek B, et al. Cirrhotic Liver of Liver Transplant Recipients Accumulate Silver and Co-Accumulate Copper. Int J Mol Sci. 2021;22(4):1782. doi:10.3390/ijms22041782
  • Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W. Lipoic acid biosynthesis defects. J Inherit Metab Dis. 2014;37(4):553–563. doi:10.1007/s10545-014-9705-8
  • Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med. 2022;20(1):452. doi:10.1186/s12967-022-03630-1
  • Bai WD, Liu JY, Li M, et al. A Novel Cuproptosis-Related Signature Identified DLAT as a Prognostic Biomarker for Hepatocellular Carcinoma Patients. World J Oncol. 2022;13(5):299–310. doi:10.14740/wjon1529
  • Chen Z, Guo Y, Zhao D, et al. Comprehensive Analysis Revealed that CDKN2A is a Biomarker for Immune Infiltrates in Multiple Cancers. Front Cell Dev Biol. 2021;9:808208. doi:10.3389/fcell.2021.808208
  • Zhou Y, Wang XB, Qiu XP, Shuai Z, Wang C, Zheng F. CDKN2A promoter methylation and hepatocellular carcinoma risk: a meta-analysis. Clin Res Hepatol Gastroenterol. 2018;42(6):529–541. doi:10.1016/j.clinre.2017.07.003