277
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Impact of Hemin on Interleukin-21 Levels and Plasma Cells in Transfusion-Dependent Thalassemia with Positive and Negative Allo-Autoantibody

ORCID Icon, & ORCID Icon
Pages 47-56 | Received 17 Nov 2022, Accepted 22 Dec 2022, Published online: 05 Jan 2023

References

  • Wahidiyat PA, Sari TT, Rahmartani LD, et al. An insight into Indonesian current thalassaemia care and challenges. ISBT Sci Ser. 2020;2020:1–8.
  • D’Arqom A. Nucleic acid therapy for β-thalassemia. Biologics. 2020;14:95–105. doi:10.2147/BTT.S265767
  • Viprakasit V, Ekwattanakit S. Clinical classification, screening and diagnosis for thalassemia. Hematol Oncol Clin North Am. 2018;32:193–211. doi:10.1016/j.hoc.2017.11.006
  • Jazuli MI, Bintoro SUY, Mudjanarko SW. The association between serum ferritin levels and 25 (OH) D levels in adult patients with transfusion dependent thalassemia. J Med Chem Sci. 2022;5:35–41.
  • Fonda T, Novida H. Management of gestational diabetes mellitus in a beta major thalassemia patient. Curr Intern Med Res Pract Surabaya J. 2021;2:45. doi:10.20473/cimrj.v2i2.26255
  • Suryawan A, Ningtiar HW, Irwanto I, et al. Determinant factors of depression in beta major thalassemia children. Folia Med Indones. 2021;57:46. doi:10.20473/fmi.v57i1.13664
  • Meulenbroek EM, Wouters D, Zeerleder SS. Lyse or not to lyse: clinical significance of red blood cell autoantibodies. Blood Rev. 2015;29:369–376. doi:10.1016/j.blre.2015.05.001
  • Tangvarasittichai S. Impact of alloimmunization on transfusion-dependent patient. Ann Adv Chem. 2017;1:70–82. doi:10.29328/journal.aac.1001009
  • Khaled MB, Ouederni M, Sahli N, et al. Predictors of autoimmune hemolytic anemia in beta-thalassemia patients with underlying red blood cells autoantibodies. Blood Cells Mol Dis. 2019;79. doi:10.1016/j.bcmd.2019.102342
  • Al-Riyami AZ, Al-Muqbali A, Al-Sudiri S, et al. Risks of red blood cell alloimmunization in transfusion-dependent β-thalassemia in Oman: a 25-year experience of a university tertiary care reference center and a literature review. Transfusion. 2018;58:871–878. doi:10.1111/trf.14508
  • Chou ST, Liem RI, Thompson AA. Challenges of alloimmunization in patients with haemoglobinopathies. Br J Haematol. 2012;159:394–404. doi:10.1111/bjh.12061
  • Seferi I, Xhetani M, Face M, et al. Frequency and specificity of red cell antibodies in thalassemia patients in Albania. Int J Lab Hematol. 2015;37:569–574. doi:10.1111/ijlh.12362
  • Zumberg MS, Procter JL, Lottenberg R, Kitchens CS, Klein HG. Autoantibody formation in the alloimmunized red blood cell recipient. Arch Intern Med. 2015;161:285–290. doi:10.1001/archinte.161.2.285
  • Zaninoni A, Fermo E, Vercellati C, et al. Congenital hemolytic anemias: is there a role for the immune system? Front Immunol. 2020;11:1–12. doi:10.3389/fimmu.2020.01309
  • Pontarini E, Murray-Brown WJ, Croia C, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjögren’s syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis. 2020;79:1588–1599. doi:10.1136/annrheumdis-2020-217646
  • Gao Y, Jin H, Nan D, et al. The role of T follicular helper cells and T follicular regulatory cells in the pathogenesis of autoimmune hemolytic anemia. Sci Rep. 2019;9:1–11. doi:10.1038/s41598-019-56365-3
  • Shan Y, Qi C, Liu Y, et al. Increased frequency of peripheral blood follicular helper T cells and elevated serum IL-21 levels in patients with knee osteoarthritis. Mol Med Rep. 2017;15:1095–1102. doi:10.3892/mmr.2017.6132
  • Kang KY, Kim HO, Kwok SK, et al. Impact of interleukin-21 in the pathogenesis of primary Sjögren’s syndrome: increased serum levels of interleukin-21 and its expression in the labial salivary glands. Arthritis Res Ther. 2011;13:R179. doi:10.1186/ar3504
  • Godefroy E, Zhong H, Pham P, et al. TIGIT-positive circulating follicular helper T cells display robust B-cell help functions: potential role in sickle cell alloimmunization. Haematologica. 2015;100:1415–1425. doi:10.3324/haematol.2015.132738
  • Khodadadi L, Cheng Q, Radbruch A, et al. The maintenance of memory plasma cells. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.00721
  • Hofmann K, Clauder AK, Manz RA. Targeting B cells and plasma cells in autoimmune diseases. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.00835
  • Dufaud CR, McHeyzer-Williams LJ, McHeyzer-Williams MG. Deconstructing the germinal center, one cell at a time. Curr Opin Immunol. 2017;45:112–118. doi:10.1016/j.coi.2017.03.007
  • Odendahl M, Mei H, Hoyer BF, et al. Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response. Blood. 2005;105:1614–1621. doi:10.1182/blood-2004-07-2507
  • Chang HD, Tokoyoda K, Hoyer B, et al. Pathogenic memory plasma cells in autoimmunity. Curr Opin Immunol. 2019;61:86–91. doi:10.1016/j.coi.2019.09.005
  • Hoyer BF, Moser K, Hauser AE, et al. Short-lived plasmablasts and long-lived plasma cells contribute to chronic humoral autoimmunity in NZB/W mice. J Exp Med. 2004;199:1577–1584. doi:10.1084/jem.20040168
  • Watanabe-Matsui M, Muto A, Matsui T, et al. Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood. 2011;117:5438–5448. doi:10.1182/blood-2010-07-296483
  • Zhong H, Bao W, Friedman D, et al. Hemin controls T cell polarization in sickle cell alloimmunization. J Immunol. 2014;193:102–110. doi:10.4049/jimmunol.1400105
  • Pal M, Bao W, Wang R, et al. Hemolysis inhibits humoral B-cell responses and modulates alloimmunization risk in patients with sickle cell disease. Blood. 2021;137:269–280. doi:10.1182/blood.2020008511
  • Roumenina LT, Rayes J, Lacroix-Desmazes S, et al. Heme: modulator of plasma systems in hemolytic diseases. Trends Mol Med. 2016;22:200–213. doi:10.1016/j.molmed.2016.01.004
  • Godoy-Ramirez K, Franck K, Mahdavifar S, et al. Optimum culture conditions for specific and nonspecific activation of whole blood and PBMC for intracellular cytokine assessment by flow cytometry. J Immunol Methods. 2004;292:1–15. doi:10.1016/j.jim.2004.04.028
  • El-Beshlawy A, Salama AA, El-Masry MR, et al. A study of red blood cell alloimmunization and autoimmunization among 200 multitransfused Egyptian β thalassemia patients. Sci Rep. 2020;10. doi:10.1038/s41598-020-78333-y
  • Wang LY, Liang DC, Liu HC, et al. Alloimmunization among patients with transfusion-dependent thalassemia in Taiwan. Transfus Med. 2006;16:200–203. doi:10.1111/j.1365-3148.2006.00656.x
  • Dogra A, Sidhu M, Kapoor R, et al. Study of red blood cell alloimmunization in multitransfused thalassemic children of Jammu region. Asian J Transfus Sci. 2015;9:78–81. doi:10.4103/0973-6247.150958
  • Samarah F, Srour MA, Yaseen D, et al. Frequency of red blood cell alloimmunization in patients with sickle cell disease in Palestine. Adv Hematol. 2018;2018:1–7. doi:10.1155/2018/5356245
  • Romphruk AV, Simtong P, Butryojantho C, et al. The prevalence, alloimmunization risk factors, antigenic exposure, and evaluation of antigen-matched red blood cells for thalassemia transfusions: a 10-year experience at a tertiary care hospital. Transfusion. 2019;59:177–184. doi:10.1111/trf.15002
  • Baharlou R, Davami MH, Ahmadi Vasmehjani A, et al. Increased IL-17 and TGF-β serum levels in peripheral blood of patients with β-thalassemia major: implication for continual transfusions role in T helper 17-mediated proinflammatory responses. Turkish J Med Sci. 2016;46:749–755. doi:10.3906/sag-1409-57
  • Moretto MM, Hwang SJ, Khan IA. Downregulated IL-21 response and T follicular helper cell exhaustion correlate with compromised CD8 T cell immunity during chronic toxoplasmosis. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.01436
  • Gassen RB, Fazolo T, Nascimento de Freitas D, et al. IL-21 treatment recovers follicular helper T cells and neutralizing antibody production in respiratory syncytial virus infection. Immunol Cell Biol. 2021;99:309–322. doi:10.1111/imcb.12418
  • Yazdanbakhsh K. Immunoregulatory networks in sickle cell alloimmunization. Hematology. 2016;2016:457–461. doi:10.1182/asheducation-2016.1.457
  • Patente TA, Pinho MP, Oliveira AA, et al. Human dendritic cells: their heterogeneity and clinical application potential in cancer immunotherapy. Front Immunol. 2019;10:1–18. doi:10.3389/fimmu.2019.00001
  • Bao W, Zhong H, Manwani D, et al. Regulatory B-cell compartment in transfused alloimmunized and non-alloimmunized patients with sickle cell disease. Am J Hematol. 2013;88:736–740. doi:10.1002/ajh.23488
  • Musette P, Bouaziz JD. B cell modulation strategies in autoimmune diseases: new concepts. Front Immunol. 2018;9:1–5. doi:10.3389/fimmu.2018.00622
  • Tormey CA, Hendrickson JE. Transfusion-related red blood cell alloantibodies: induction and consequences. Blood. 2019;133:1821–1830. doi:10.1182/blood-2018-08-833962
  • Li G, Xue H, Fan Z, et al. Impact of heme on specific antibody production in mice: promotive, inhibitive or null outcome is determined by its concentration. Heliyon. 2017;3:e00303. doi:10.1016/j.heliyon.2017.e00303
  • Martins R, Knapp S. Heme and hemolysis in innate immunity: adding insult to injury. Curr Opin Immunol. 2018;50:14–20. doi:10.1016/j.coi.2017.10.005
  • Pfefferlé M, Ingoglia G, Schaer CA, et al. Acute hemolysis and heme suppress anti-CD40 antibody-induced necro-inflammatory liver disease. Front Immunol. 2021;12:1–12. doi:10.3389/fimmu.2021.680855