194
Views
6
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Application of Periventricular White Matter Hyperintensities Combined with Homocysteine into Predicting Mild Cognitive Impairment in Parkinson’s Disease

ORCID Icon, &
Pages 785-792 | Received 30 Nov 2022, Accepted 21 Feb 2023, Published online: 28 Feb 2023

References

  • Linortner P, McDaniel C, Shahid M, et al. White matter hyperintensities related to parkinson’s disease executive function. Mov Disord Clin Pract. 2020;7(6):629–638. doi:10.1002/mdc3.12956
  • Aarsland D, Batzu L, Halliday GM, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):47. doi:10.1038/s41572-021-00280-3
  • Baiano C, Barone P, Trojano L, et al. Prevalence and clinical aspects of mild cognitive impairment in Parkinson’s disease: a meta-analysis. Mov Disord. 2020;35(1):45–54. doi:10.1002/mds.27902
  • Pedersen KF, Larsen JP, Tysnes OB, et al. Prognosis of mild cognitive impairment in early Parkinson disease: the Norwegian ParkWest study. JAMA Neurol. 2013;70(5):580–586. doi:10.1001/jamaneurol.2013.2110
  • Posada IJ, Benito-León J, Louis ED, et al. Mortality from Parkinson’s disease: a population-based prospective study (NEDICES). Mov Disord. 2011;26(14):2522–2529. doi:10.1002/mds.23921
  • Erten-Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology. 2013;81(11):977–983. doi:10.1212/WNL.0b013e3182a43e45
  • de Schipper LJ, Hafkemeijer A, Bouts MJ, et al. Age- and disease-related cerebral white matter changes in patients with Parkinson’s disease. Neurobiol Aging. 2019;80:203–209. doi:10.1016/j.neurobiolaging.2019.05.004
  • Griffanti L, Jenkinson M, Suri S, et al. Classification and characterization of periventricular and deep white matter hyperintensities on MRI: a study in older adults. Neuroimage. 2018;170:174–181. doi:10.1016/j.neuroimage.2017.03.024
  • Huang X, Wen MC, Ng SY, et al. Periventricular white matter hyperintensity burden and cognitive impairment in early Parkinson’s disease. Eur J Neurol. 2020;27(6):959–966. doi:10.1111/ene.14192
  • Mak E, Dwyer MG, Ramasamy DP, et al. White matter hyperintensities and mild cognitive impairment in Parkinson’s disease. J Neuroimaging. 2015;25(5):754–760. doi:10.1111/jon.12230
  • Portillo F, Vázquez J, Pajares MA. Protein-protein interactions involving enzymes of the mammalian methionine and homocysteine metabolism. Biochimie. 2020;173:33–47. doi:10.1016/j.biochi.2020.02.015
  • Li J, Gu C, Zhu M, et al. Correlations between blood lipid, serum cystatin C, and homocysteine levels in patients with Parkinson’s disease. Psychogeriatrics. 2020;20(2):180–188. doi:10.1111/psyg.12483
  • Costa-Mallen P, Zabetian CP, Agarwal P, et al. Haptoglobin phenotype modifies serum iron levels and the effect of smoking on Parkinson disease risk. Parkinsonism Relat Disord. 2015;21(9):1087–1092. doi:10.1016/j.parkreldis.2015.07.006
  • Zou J, Chen Z, Liang C, et al. Trefoil factor 3, cholinesterase and homocysteine: potential predictors for Parkinson’s disease dementia and vascular parkinsonism dementia in advanced stage. Aging Dis. 2018;9(1):51–65. doi:10.14336/AD.2017.0416
  • Song IU, Kim JS, Park IS, et al. Clinical significance of homocysteine (hcy) on dementia in Parkinson’s disease (PD). Arch Gerontol Geriatr. 2013;57(3):288–291. doi:10.1016/j.archger.2013.04.015
  • Licking N, Murchison C, Cholerton B, et al. Homocysteine and cognitive function in Parkinson’s disease. Parkinsonism Relat Disord. 2017;44:1–5. doi:10.1016/j.parkreldis.2017.08.005
  • Fu XY, Zhang YC, Ding CW, et al. Association between homocysteine and third ventricle dilatation, mesencephalic area atrophy in Parkinson’s disease with cognitive Impairment. J Clin Neurosci. 2021;90:273–278. doi:10.1016/j.jocn.2021.06.006
  • Litvan I, Bhatia KP, Burn DJ, et al; Movement Disorders Society Scientific Issues Committee. Movement disorders society scientific issues committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord. 2003;18(5):467–486. doi:10.1002/mds.10459
  • Litvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology. 1996;47(1):1–9. doi:10.1212/wnl.47.1.1
  • Gilman S, Low P, Quinn N, et al. Consensus statement on the diagnosis of multiple system atrophy. American Autonomic Society and American Academy of Neurology. Clin Auton Res. 1998;8(6):359–362. doi:10.1007/BF02309628
  • Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26(3):839–851. doi:10.1016/j.neuroimage.2005.02.018
  • McAleese KE, Alafuzoff I, Charidimou A, et al. Post-mortem assessment in vascular dementia: advances and aspirations. BMC Med. 2016;14(1):129. doi:10.1186/s12916-016-0676-5
  • Prins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol. 2015;11(3):157–165. doi:10.1038/nrneurol.2015.10
  • Verbaan D, Marinus J, Visser M, et al. Cognitive impairment in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2007;78(11):1182–1187. doi:10.1136/jnnp.2006.112367
  • Oh YS, Kim JS, Lee KS. Orthostatic and supine blood pressures are associated with white matter hyperintensities in Parkinson disease. J Mov Disord. 2013;6(2):23–27. doi:10.14802/jmd.13006
  • Kim JS, Oh YS, Lee KS, et al. Association of cognitive dysfunction with neurocirculatory abnormalities in early Parkinson disease. Neurology. 2012;79(13):1323–1331. doi:10.1212/WNL.0b013e31826c1acd
  • McDonald C, Newton JL, Burn DJ. Orthostatic hypotension and cognitive impairment in Parkinson’s disease: causation or association? Mov Disord. 2016;31(7):937–946. doi:10.1002/mds.26632
  • Bohnen NI, Albin RL. White matter lesions in Parkinson disease. Nat Rev Neurol. 2011;7(4):229–236. doi:10.1038/nrneurol.2011.21
  • Dadar M, Zeighami Y, Yau Y, et al. White matter hyperintensities are linked to future cognitive decline in de novo Parkinson’s disease patients. Neuroimage Clin. 2018;20:892–900. doi:10.1016/j.nicl.2018.09.025
  • Lee SJ, Kim JS, Yoo JY, et al. Influence of white matter hyperintensities on the cognition of patients with Parkinson disease. Alzheimer Dis Assoc Disord. 2010;24(3):227–233. doi:10.1097/WAD.0b013e3181d71a13
  • Sunwoo MK, Jeon S, Ham JH, et al. The burden of white matter hyperintensities is a predictor of progressive mild cognitive impairment in patients with Parkinson’s disease. Eur J Neurol. 2014;21(6):922–e50. doi:10.1111/ene.12412
  • Liu H, Deng B, Xie F, et al. The influence of white matter hyperintensity on cognitive impairment in Parkinson’s disease. Ann Clin Transl Neurol. 2021;8(9):1917–1934. doi:10.1002/acn3.51429
  • Bhatia P, Singh N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol. 2015;29(6):522–528. doi:10.1111/fcp.12145
  • Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. doi:10.1186/1475-2891-14-6
  • Refsum H, Nurk E, Smith AD, et al. The Hordaland homocysteine study: a community-based study of homocysteine, its determinants, and associations with disease. J Nutr. 2006;136(6 Suppl):1731S–1740S. doi:10.1093/jn/136.6.1731S
  • Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006;580(13):2994–3005. doi:10.1016/j.febslet.2006.04.088
  • Prins ND, Den Heijer T, Hofman A, et al.; Rotterdam Scan Study. Homocysteine and cognitive function in the elderly: the Rotterdam Scan Study. Neurology. 2002;59(9):1375–1380. doi:10.1212/01.wnl.0000032494.05619.93
  • Quadri P, Fragiacomo C, Pezzati R, et al. Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin Chem Lab Med. 2005;43(10):1096–1100. doi:10.1515/CCLM.2005.191
  • Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346(7):476–483. doi:10.1056/NEJMoa011613
  • Bertsch T, Mielke O, Höly S, et al. Homocysteine in cerebrovascular disease: an independent risk factor for subcortical vascular encephalopathy. Clin Chem Lab Med. 2001;39(8):721–724. doi:10.1515/CCLM.2001.120
  • Tiemeier H, van Tuijl HR, Hofman A, et al. Vitamin B 12 folate, and homocysteine in depression: the Rotterdam study. Am J Psychiatry. 2002;159(12):2099–2101. doi:10.1176/appi.ajp.159.12.2099
  • Dong B, Wu R. Plasma homocysteine, folate and vitamin B12 levels in Parkinson’s disease in China: a meta-analysis. Clin Neurol Neurosurg. 2020;188:105587. doi:10.1016/j.clineuro.2019.105587
  • Rodriguez-Oroz MC, Lage PM, Sanchez-Mut J, et al. Homocysteine and cognitive impairment in Parkinson’s disease: a biochemical, neuroimaging, and genetic study. Mov Disord. 2009;24(10):1437–1444. doi:10.1002/mds.22522
  • Kocer B, Guven H, Conkbayir I, et al. The effect of hyperhomocysteinemia on motor symptoms, cognitive status, and vascular risk in patients with Parkinson’s disease. Parkinsons Dis. 2016;2016:1589747. doi:10.1155/2016/1589747