198
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Development and Validation of a Diagnostic Model Based on Hypoxia-Related Genes in Myocardial Infarction

, , &
Pages 2111-2123 | Received 23 Feb 2023, Accepted 18 May 2023, Published online: 29 May 2023

References

  • Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197–210. doi:10.1016/s0140-6736(16)30677-8
  • Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 2018;186:(73–87. doi:10.1016/j.pharmthera.2018.01.001
  • Frangogiannis NG. Regulation of the inflammatory response in cardiac repair. Circ Res. 2012;110(1):159–173. doi:10.1161/circresaha.111.243162
  • Castro-Dominguez Y, Dharmarajan K, McNamara RL. Predicting death after acute myocardial infarction. Trends Cardiovasc Med. 2018;28(2):102–109. doi:10.1016/j.tcm.2017.07.011
  • Zhang Q, Wang L, Wang S, et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct Target Ther. 2022;7(1):78. doi:10.1038/s41392-022-00925-z
  • Dergilev KV, Tsokolaeva ZI, Vasilets YD, et al. Hypoxia - as a possible regulator of the activity of epicardial mesothelial cells after myocardial infarction. Kardiologiia. 2021;61(6):59–68. doi:10.18087/cardio.2021.6.n1476
  • Dölling M, Eckstein M, Singh J, et al. Hypoxia promotes neutrophil survival after acute myocardial infarction. Front Immunol. 2022;13:(726153. doi:10.3389/fimmu.2022.726153
  • Kologrivova I, Shtatolkina M, Suslova T, et al. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol. 2021;12:(664457. doi:10.3389/fimmu.2021.664457
  • Charoentong P, Finotello F, Angelova M, et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep. 2017;18(1):248–262. doi:10.1016/j.celrep.2016.12.019
  • Blom JN, Wang X, Lu X, et al. Inhibition of intraflagellar transport protein-88 promotes epithelial-to-mesenchymal transition and reduces cardiac remodeling post-myocardial infarction. Eur J Pharmacol. 2022;933:(175287. doi:10.1016/j.ejphar.2022.175287
  • Kloner RA, Carson C 3rd, Dobs A, et al. Testosterone and cardiovascular disease. J Am Coll Cardiol. 2016;67(5):545–557. doi:10.1016/j.jacc.2015.12.005
  • Oskui PM, French WJ, Herring MJ, et al. Testosterone and the cardiovascular system: a comprehensive review of the clinical literature. J Am Heart Assoc. 2013;2(6):e000272. doi:10.1161/jaha.113.000272
  • Luo S, Au Yeung SL, Zhao JV, et al. Association of genetically predicted testosterone with thromboembolism, heart failure, and myocardial infarction: Mendelian randomisation study in UK Biobank. BMJ. 2019;364:(l476. doi:10.1136/bmj.l476
  • Lungkaphin A, Pongchaidecha A, Palee S, et al. Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl Physiol Nutr Metab. 2015;40(10):1031–1037. doi:10.1139/apnm-2015-0108
  • Zhang P, Xu J, Hu W, et al. Effects of pinocembrin pretreatment on connexin 43 (Cx43) protein expression after rat myocardial ischemia-reperfusion and cardiac arrhythmia. Med Sci Monit. 2018;24:(5008–5014. doi:10.12659/msm.909162
  • Ye T, Zhang C, Wu G, et al. Pinocembrin attenuates autonomic dysfunction and atrial fibrillation susceptibility via inhibition of the NF-κB/TNF-α pathway in a rat model of myocardial infarction. Int Immunopharmacol. 2019;77:(105926. doi:10.1016/j.intimp.2019.105926
  • Tanaka A, Ishii H, Sakakibara M, et al. Temporary adjunctive cilostazol vs clopidogrel loading for ST-segment elevation acute myocardial infarction. Am J Cardiovasc Drugs. 2014;14(2):131–136. doi:10.1007/s40256-013-0059-7
  • Lee MY, Kim NH, Ko JS. Protective effect of cilostazol against restraint stress induced heart failure in post-myocardial infarction rat model. Chonnam Med J. 2020;56(3):180–185. doi:10.4068/cmj.2020.56.3.180
  • Yan Y, Wang J, Yu L, et al. ANKRD36 is involved in hypertension by altering expression of ENaC Genes. Circ Res. 2021;129(11):1067–1081. doi:10.1161/circresaha.121.319883
  • Iqbal Z, Absar M, Akhtar T, et al. Integrated genomic analysis identifies ANKRD36 gene as a novel and common biomarker of disease progression in chronic myeloid leukemia. Biology. 2021;10(11). doi:10.3390/biology10111182
  • Liu L, Liu H, Zhou Y, et al. HLTF suppresses the migration and invasion of colorectal cancer cells via TGF‑β/SMAD signaling in vitro. Int J Oncol. 2018;53(6):2780–2788. doi:10.3892/ijo.2018.4591
  • Wang W, Zhang R, Wang X, et al. Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb-E2F signaling and epithelial-mesenchymal transition. Cancer Sci. 2020;111(4):1422–1434. doi:10.1111/cas.14324
  • Zhang S, Xie C. The role of OXCT1 in the pathogenesis of cancer as a rate-limiting enzyme of ketone body metabolism. Life Sci. 2017;183:110–115. doi:10.1016/j.lfs.2017.07.003
  • Zhang XQ, Li L. Biological function and clinical value of VPS13A in pan-cancer based on bioinformatics analysis. Int J Gen Med. 2021;14:(6825–6838. doi:10.2147/ijgm.s330256
  • Cheng X, Ferino E, Hull H, et al. Smoking affects gene expression in blood of patients with ischemic stroke. Ann Clin Transl Neurol. 2019;6(9):1748–1756. doi:10.1002/acn3.50876
  • Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. doi:10.1038/ng.2480
  • Meng X, Yang J, Dong M, et al. Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 2016;13(3):167–179. doi:10.1038/nrcardio.2015.169
  • Zhao X, Wang J, He J, et al. 致敏性CD4+ T细胞来源的外泌体介导心肌梗死后心肌重构的机制研究 [Effects of activated CD4(+) T cell-derived exosomes on cardiac remodeling after myocardial infarction]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2021;33(11):1332–1336. Chinese. doi:10.3760/cma.j.cn121430-20210709-01038
  • Arfvidsson J, Ahlin F, Vargas KG, et al. Monocyte subsets in myocardial infarction: a review. Int J Cardiol. 2017;231:47–53. doi:10.1016/j.ijcard.2016.12.182
  • Mentkowski KI, Euscher LM, Patel A, et al. Monocyte recruitment and fate specification after myocardial infarction. Am J Physiol Cell Physiol. 2020;319(5):C797–c806. doi:10.1152/ajpcell.00330.2020