177
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Construction and Assessment of a Prognostic Risk Model for Cervical Cancer Based on Lactate Metabolism-Related lncRNAs

, , , , , , & show all
Pages 2943-2960 | Received 20 Mar 2023, Accepted 08 Jun 2023, Published online: 11 Jul 2023

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Guimarães YM, Godoy LR, Longatto-Filho A, et al. Management of early-stage cervical cancer: a literature review. Cancers. 2022;14(3):575. doi:10.3390/cancers14030575
  • Seol HJ, Ulak R, Ki KD, Lee JM. Cytotoxic and targeted systemic therapy in advanced and recurrent cervical cancer: experience from clinical trials. Tohoku J Exp Med. 2014;232(4):269–276. doi:10.1620/tjem.232.269
  • Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet. 2019;393(10167):169–182. doi:10.1016/S0140-6736(18)32470-X
  • Zhu D, Jiang Y, Cao H, et al. Lactate: a regulator of immune microenvironment and a clinical prognosis indicator in colorectal cancer. Front Immunol. 2022;13:876195. doi:10.3389/fimmu.2022.876195
  • Zhou HC, Yan X-Y, Yu WW, et al. Lactic acid in macrophage polarization: the significant role in inflammation and cancer. Int Rev Immunol. 2022;41(1):4–18. doi:10.1080/08830185.2021.1955876
  • Chen L, Huang L, Gu Y, Cang W, Sun P, Xiang Y. Lactate-lactylation hands between metabolic reprogramming and immunosuppression. Int J Mol Sci. 2022;23(19):11943. doi:10.3390/ijms231911943
  • Jedlička M, Feglarová T, Janstová L, Hortová-Kohoutková M, Frič J. Lactate from the tumor microenvironment - A key obstacle in NK cell-based immunotherapies. Front Immunol. 2022;13:932055.
  • Certo M, Tsai CH, Pucino V, Ho PC, Mauro C. Lactate modulation of immune responses in inflammatory versus tumour microenvironments. Nat Rev Immunol. 2021;21(3):151–161. doi:10.1038/s41577-020-0406-2
  • Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer. Exp Mol Pathol. 2019;106(106):7–16. doi:10.1016/j.yexmp.2018.11.010
  • Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes. 2019;10(1):52. doi:10.3390/genes10010052
  • Guan C, Wang B, Dong Q, Yang D-H. The IncRNA SCIRT promotes the proliferative, migratory, and invasive properties of cervical cancer cells by upregulating MMP-2/-9. J Oncol. 2022;2022:3448224. doi:10.1155/2022/3448224
  • Fang F, Guo C, Zheng W, Li Q, Shen Y. LINC00707 promotes cell proliferation in cervical cancer via the miR-374c-5p/SDC4 axis. Biomed Res Int. 2022;2022:5793912. doi:10.1155/2022/5793912
  • Lin Y, Xiao Y, Liu S, et al. Role of a lipid metabolism-related lncRNA signature in risk stratification and immune microenvironment for colon cancer. BMC Med Genomics. 2022;15(1):221. doi:10.1186/s12920-022-01369-8
  • Xu Y, Wang C, Li S, Zhou H, Feng Y. Prognosis and immune response of a cuproptosis-related lncRNA signature in low grade glioma. Front Genet. 2022;13:975419. doi:10.3389/fgene.2022.975419
  • Huang G, Huang Y, Zhang C, et al. Identification of cuproptosis-related long noncoding RNA signature for predicting prognosis and immunotherapy response in bladder cancer. Sci Rep. 2022;12(1):21386. doi:10.1038/s41598-022-25998-2
  • Liu H, Wan J, Feng Q, et al. Long non-coding RNA SOS1-IT1 promotes endometrial cancer progression by regulating hypoxia signaling pathway. J Cell Commun Signal. 2022;16(2):253–270. doi:10.1007/s12079-021-00651-1
  • Sha D, Jin Z, Budczies J, et al. Tumor mutational burden as a predictive biomarker in solid tumors. Cancer Discov. 2020;10(12):1808–1825. doi:10.1158/2159-8290.CD-20-0522
  • Cao J, Yang X, Chen S, et al. The predictive efficacy of tumor mutation burden in immunotherapy across multiple cancer types: a meta-analysis and bioinformatics analysis. Transl Oncol. 2022;20:101375. doi:10.1016/j.tranon.2022.101375
  • Ju L, Shi Y, Liu G. Identification and validation of a ferroptosis-related lncRNA signature to robustly predict the prognosis, immune microenvironment, and immunotherapy efficiency in patients with clear cell renal cell carcinoma. PeerJ. 2022;10:e14506. doi:10.7717/peerj.14506
  • Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exper Clin Cancer Res. 2019;38(1):255. doi:10.1186/s13046-019-1259-z
  • Wei SC, Levine JH, Cogdill AP, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170(6):1120–1133.e17. doi:10.1016/j.cell.2017.07.024
  • Jiang ZR, Yang LH, Jin LZ, et al. Identification of novel cuproptosis-related lncRNA signatures to predict the prognosis and immune microenvironment of breast cancer patients. Front Oncol. 2022;12:988680. doi:10.3389/fonc.2022.988680
  • Collins Y, Holcomb K, Chapman-Davis E, Khabele D, Farley JH. Gynecologic cancer disparities: a report from the health disparities taskforce of the Society of Gynecologic Oncology. Gynecol Oncol. 2014;133(2):353–361. doi:10.1016/j.ygyno.2013.12.039
  • Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Global Health. 2020;8(2):e191–e203. doi:10.1016/S2214-109X(19)30482-6
  • Ronsini C, De Franciscis P, Carotenuto RM, et al. The oncological implication of sentinel lymph node in early cervical cancer: a meta-analysis of oncological outcomes and type of recurrences. Medicina. 2022;58(11):1539. doi:10.3390/medicina58111539
  • Liu X, Zhou L, Gao M, Dong S, Hu Y, Hu C. Signature of seven cuproptosis-related lncRNAs as a novel biomarker to predict prognosis and therapeutic response in cervical cancer. Front Genet. 2022;13:989646. doi:10.3389/fgene.2022.989646
  • Gennigens C, Jerusalem G, Lapaille L, et al. Recurrent or primary metastatic cervical cancer: current and future treatments. ESMO open. 2022;7(5):100579. doi:10.1016/j.esmoop.2022.100579
  • Gao Y, Zhou H, Liu G, et al. Tumor microenvironment: lactic acid promotes tumor development. J Immunol Res. 2022;2022:3119375. doi:10.1155/2022/3119375
  • Tian LR, Lin MZ, Zhong HH, et al. Nanodrug regulates lactic acid metabolism to reprogram the immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Biomater Sci. 2022;10(14):3892–3900. doi:10.1039/D2BM00650B
  • Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109(7):2093–2100. doi:10.1111/cas.13642
  • Salinas-Montalvo AM, Supramaniam A, McMillan NA, Idris A. RNA-based gene targeting therapies for human papillomavirus driven cancers. Cancer Lett. 2021;523:111–120. doi:10.1016/j.canlet.2021.10.005
  • Cáceres-Durán MÁ, Ribeiro-Dos-Santos Â, Vidal AF. Roles and mechanisms of the long noncoding RNAs in cervical cancer. Int J Mol Sci. 2020;21(24):24 9742. doi:10.3390/ijms21249742
  • Sun W, Shen NM, Fu SL. Involvement of lncRNA-mediated signaling pathway in the development of cervical cancer. Eur Rev Med Pharmacol Sci. 2019;23(9):3672–3687. doi:10.26355/eurrev_201905_17791
  • Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–1370. doi:10.1200/JCO.2007.12.9791
  • Lang X, Huang C, Cui H, Wang F. Prognosis analysis and validation of fatty acid metabolism-related lncRNAs and tumor immune microenvironment in cervical cancer. J Immunol Res. 2022;2022:4954457. doi:10.1155/2022/4954457
  • Liang D, Hu M, Tang Q, Huang M, Tang L. Nine pyroptosis-related lncRNAs are identified as biomarkers for predicting the prognosis and immunotherapy of endometrial carcinoma. Int J Gen Med. 2021;14:8073–8085. doi:10.2147/IJGM.S338298
  • Wang D, Chen Q, Liu J, Liao Y, Jiang Q. Silencing of lncRNA CHRM3-AS2 expression exerts anti-tumour effects against glioma via targeting microRNA-370-5p/KLF4. Front Oncol. 2022;12:856381. doi:10.3389/fonc.2022.856381
  • Li Y, Huo FF, Wen YY, Jiang M. Screening and identification of an immune-associated lncRNA prognostic signature in ovarian carcinoma: evidence from bioinformatic analysis. Biomed Res Int. 2021;2021:6680036. doi:10.1155/2021/6680036
  • Huang DP, Liao MM, Tong JJ, et al. Construction of a genome instability-derived lncRNA-based risk scoring system for the prognosis of hepatocellular carcinoma. Aging. 2021;13(22):24621–24639. doi:10.18632/aging.203698
  • Wang Z, Chen Z, Guo T, et al. Identification and verification of immune subtype-related lncRNAs in clear cell renal cell carcinoma. Front Oncol. 2022;12:888502. doi:10.3389/fonc.2022.888502
  • Lai D, Tan L, Zuo X, et al. Prognostic ferroptosis-related lncRNA signatures associated with immunotherapy and chemotherapy responses in patients with stomach cancer. Front Genet. 2022;12:798612. doi:10.3389/fgene.2021.798612
  • Cai HJ, Zhuang ZC, Wu Y, et al. Development and validation of a ferroptosis-related lncRNAs prognosis signature in colon cancer. Bosnian J Basic Med Sci. 2021;21(5):569–576. doi:10.17305/bjbms.2020.5617
  • Guan B, Ma J, Yang Z, Yu F, Yao J. LncRNA NCK1-AS1 exerts oncogenic property in gastric cancer by targeting the miR-22-3p/BCL9 axis to activate the Wnt/β-catenin signaling. Environ Toxicol. 2021;36(8):1640–1653. doi:10.1002/tox.23160
  • Gandara DR, Paul SM, Kowanetz M, et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med. 2018;24(9):1441–1448. doi:10.1038/s41591-018-0134-3
  • Barnes TA, Amir E. HYPE or HOPE: the prognostic value of infiltrating immune cells in cancer. Br J Cancer. 2017;117(4):451–460. doi:10.1038/bjc.2017.220