275
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification of MiR-223 Associated with Diagnosis in Ectopic Pregnancy

ORCID Icon, , &
Pages 2693-2705 | Received 31 Mar 2023, Accepted 20 Jun 2023, Published online: 27 Jun 2023

References

  • Chen C-Y, Hwu Y-M, Chen C-P, Chang -C-C. Quantitative analysis of total β-subunit of human chorionic gonadotropin concentration in urine by immunomagnetic reduction to assist in the diagnosis of ectopic pregnancy. Int J Nanomedicine. 2015;10:2475. doi:10.2147/IJN.S81201
  • Zhang C-M, Zhao J, Deng H-Y. MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci. 2013;20(1):1–10. doi:10.1186/1423-0127-20-79
  • Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol. 2016;303:1–6. doi:10.1016/j.cellimm.2016.04.003
  • Aziz F, Chakraborty A, Khan I, Monts J. Relevance of miR-223 as potential diagnostic and prognostic markers in cancer. Biology. 2022;11(2):249. doi:10.3390/biology11020249
  • Gu J, Xu H, Chen Y, Li N, Hou X. miR-223 as a regulator and therapeutic target in liver diseases. Front Immunol. 2022;13.
  • Dominguez F, Moreno-Moya JM, Lozoya T, et al. Embryonic miRNA profiles of normal and ectopic pregnancies. PLoS One. 2014;9(7):e102185. doi:10.1371/journal.pone.0102185
  • Clough E, Barrett T. The gene expression omnibus database. other. 2016;1:65.
  • Davis S, Meltzer PS. GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–1847. doi:10.1093/bioinformatics/btm254
  • Gentleman R, Carey VJ, Huber W, Irizarry RA, Dudoit S. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Vol. 1. Springer; 2005.
  • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):1–25. doi:10.2202/1544-6115.1027
  • Li J-H, Liu S, Zhou H, L-H Q, Yang J-H. starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):D92–D97. doi:10.1093/nar/gkt1248
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/75556
  • Kanehisa M, Sato Y, Kawashima M. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 2022;31(1):47–53. doi:10.1002/pro.4172
  • Kern F, Fehlmann T, Solomon J, et al. miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res. 2020;48(W1):W521–W528. doi:10.1093/nar/gkaa309
  • Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49(D1):D605–D612. doi:10.1093/nar/gkaa1074
  • Perkins KM, Boulet SL, Kissin DM, Jamieson DJ, Group NAS. Risk of ectopic pregnancy associated with assisted reproductive technology in the United States, 2001–2011. Obstet Gynecol. 2015;125(1):70. doi:10.1097/AOG.0000000000000584
  • Yijie G, Mengdan S, Min L, et al. MiR-95-3p/EPM2A/MMP2 contributes to the pathogenesis of severe preeclampsia through the regulation of trophoblast biological behaviour. Arch Biochem Biophys. 2023;741:109596.
  • Michela C, Francesca P, Patrizia G, et al. MiR-223 Exclusively Impairs In Vitro Tumor Growth through IGF1R Modulation in Rhabdomyosarcoma of Adolescents and Young Adults. Int J Mol Sci. 2022;23(22):46.
  • Zhijuan X, Jun T, Zhong C, Lanji W, Jianying C, Qin L. Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK. Inflammation Res. 2023;72(3):847.
  • Lin L, Pengwei L, Chiyi H, Chunfang X. miRNA-223-3p regulates ECT2 to promote proliferation, invasion, and metastasis of gastric cancer through the Wnt/β-catenin signaling pathway. J Cancer Res Clin Oncol. 2022;149(1):5986.
  • Favero A, Segatto I, Perin T, Belletti B. The many facets of miR‐223 in cancer: oncosuppressor, oncogenic driver, therapeutic target, and biomarker of response. Wiley Interdiscip Rev RNA. 2021;12(6):e1659. doi:10.1002/wrna.1659
  • Wei Z, Wang Y, Jiang L, et al. miR-223 regulates oral squamous cell carcinoma metastasis through the Wnt/β-catenin signaling pathway. Oral Oncol. 2020;109:104941. doi:10.1016/j.oraloncology.2020.104941
  • Dong YW, Wang R, Cai QQ, et al. Sulfatide epigenetically regulates miR-223 and promotes the migration of human hepatocellular carcinoma cells. J Hepatol. 2014;60(4):792–801. doi:10.1016/j.jhep.2013.12.004
  • Jeffries J, Zhou W, Hsu AY, Deng Q. miRNA-223 at the crossroads of inflammation and cancer. Cancer Lett. 2019;451:136–141. doi:10.1016/j.canlet.2019.02.051
  • Li Q, Jiang B, Qi Y, Zhang H, Ma H. Long non-coding RNA SLCO4A1-AS1 drives the progression of non-small-cell lung cancer by modulating miR-223-3p/IKKα/NF-κB signaling. Cancer Biol Ther. 2020;21(9):806–814. doi:10.1080/15384047.2020.1787757
  • Geng S, Tu S, Fu W, Wang J, Bai Z. LncRNA PITPNA-AS1 stimulates cell proliferation and suppresses cell apoptosis in glioblastoma via targeting miR-223-3p/EGFR axis and activating PI3K/AKT signaling pathway. Cell Cycle. 2021;20(19):1988–1998. doi:10.1080/15384101.2021.1958503
  • Rose SA, Wroblewska A, Dhainaut M, et al. A microRNA expression and regulatory element activity atlas of the mouse immune system. Nat Immunol. 2021;22(7):914–927. doi:10.1038/s41590-021-00944-y
  • Yuan S, Chen Y, Zhang M, et al. Overexpression of miR-223 Promotes Tolerogenic Properties of Dendritic Cells Involved in Heart Transplantation Tolerance by Targeting Irak1. Front Immunol. 2021;12:676337.
  • Roffel MP, Boudewijn IM, van Nijnatten JL, et al. Identification of asthma-associated microRNAs in bronchial biopsies. Eur Respir J. 2022;59(3):2101294. doi:10.1183/13993003.01294-2021
  • Haacke EM, Ge Y, Sethi SK, Buch S, Zamboni P. An overview of venous abnormalities related to the development of lesions in multiple sclerosis. Front Neurol. 2021;589.
  • Morquette B, Juźwik CA, Drake SS, et al. MicroRNA-223 protects neurons from degeneration in experimental autoimmune encephalomyelitis. Brain. 2019;142(10):2979–2995. doi:10.1093/brain/awz245
  • Yang J, Kuang H, Li N, Hamdy AM, Song J. The modulation and mechanism of probiotic-derived polysaccharide capsules on the immune response in allergic diseases. Crit Rev Food Sci Nutr. 2022;1–13.
  • Mázló A, Jenei V, Burai S, Molnár T, Bácsi A, Koncz G. Types of necroinflammation, the effect of cell death modalities on sterile inflammation. Cell Death Dis. 2022;13(5):1–12. doi:10.1038/s41419-022-04883-w
  • Specjalski K, Jassem E. MicroRNAs: potential biomarkers and targets of therapy in allergic diseases? Arch Immunol Ther Exp (Warsz). 2019;67(4):213–223. doi:10.1007/s00005-019-00547-4
  • Snyder BL, Blackshear PJ. Clinical implications of tristetraprolin (TTP) modulation in the treatment of inflammatory diseases. Pharmacol Ther. 2022;239:108198. doi:10.1016/j.pharmthera.2022.108198
  • Chen Q, Li H, Liu Y, Zhao M. Epigenetic regulation of immune and inflammatory responses in rheumatoid arthritis. Front Immunol. 2022;2:1700.
  • Zheng X, Zhao F-C, Pang Y, et al. Downregulation of miR-221-3p contributes to IL-1β-induced cartilage degradation by directly targeting the SDF1/CXCR4 signaling pathway. J Mol Med. 2017;95(6):615–627. doi:10.1007/s00109-017-1516-6