189
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

NEK6 Promotes the Progression of Osteosarcoma Through Activating STAT3 Signaling Pathway by Down-Regulation of miR-26a-5p

ORCID Icon, , , , , , , & show all
Pages 2831-2848 | Received 21 Mar 2023, Accepted 19 Jun 2023, Published online: 04 Jul 2023

References

  • Yu L, Zhang J, Li Y. Effects of microenvironment in osteosarcoma on chemoresistance and the promise of immunotherapy as an osteosarcoma therapeutic modality. Front Immunol. 2022;13:871076.
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. doi:10.3322/caac.21654
  • Marchandet L, Lallier M, Charrier C, et al. Mechanisms of resistance to conventional therapies for osteosarcoma. Cancers. 2021;13:683.
  • Lu KH, Lu PW, Lu EW, et al. Curcumin and its analogs and carriers: potential therapeutic strategies for human osteosarcoma. Int J Biol Sci. 2023;19:1241–1265. doi:10.7150/ijbs.80590
  • Eker N, Tokuc AG, Yılmaz B, et al. Outcomes of osteosarcoma in children without high-dose methotrexate: could it be less toxic without effecting survival rates? J Adolesc Young Adult Oncol. 2022;11:252–258.
  • Urlić I, Jovičić MŠ, Ostojić K, et al. Cellular and genetic background of osteosarcoma. Curr Issues Mol Biol. 2023;45:4344–4358.
  • Hız M, Karaismailoglu B, Ulutas S, et al. The effect of preoperative radiotherapy on local control and prognosis in high-grade non-metastatic intramedullary osteosarcoma of the extremities. Arch Orthop Trauma Surg. 2021;141:1083–1089. doi:10.1007/s00402-020-03494-4
  • Fauske L, Jebsen NL, Bondevik H, et al. Exploring the patient perspective of bone sarcoma survivors who have undergone particle radiotherapy abroad. Anticancer Res. 2023;43:2031–2039.
  • Ouyang H, Wang Z. Predictive value of the systemic immune-inflammation index for cancer-specific survival of osteosarcoma in children. Front Public Health. 2022;10:879523. doi:10.3389/fpubh.2022.879523
  • Dong Z, Liao Z, He Y, et al. Advances in the biological functions and mechanisms of miRNAs in the development of osteosarcoma. Technol Cancer Res Treat. 2022;21:1–16.
  • Meltzer PS, Helman LJ. New horizons in the treatment of osteosarcoma. N Engl J Med. 2021;385:2066–2076. doi:10.1056/NEJMra2103423
  • Kelley LM, Schlegel M, Hecker-Nolting S, et al. Pathological fracture and prognosis of high-grade osteosarcoma of the extremities: an analysis of 2847 Consecutive Cooperative Osteosarcoma Study Group (COSS) patients. J Clin Oncol. 2020;38:823–833. doi:10.1200/JCO.19.00827
  • Beird HC, Bielack SS, Flanagan AM, et al. Osteosarcoma. Nat Rev Dis Primers. 2022;8:77.
  • Hattinger CM, Patrizio MP, Fantoni L, et al. Drug resistance in osteosarcoma: emerging biomarkers, therapeutic targets and treatment strategies. Cancers. 2021;13:2878. doi:10.3390/cancers13122878
  • Li YY, Guo L, Han ZM. Roles of NEK family in cell cycle regulation. Yi Chuan. 2021;43:642–653.
  • Moniz L, Dutt P, Haider N, et al. Nek family of kinases in cell cycle, checkpoint control and cancer. Cell Div. 2011;6:18. doi:10.1186/1747-1028-6-18
  • Panchal NK, Evan Prince S. The NEK family of serine/threonine kinases as a biomarker for cancer. Clin Exp Med. 2023;23:17–30. doi:10.1007/s10238-021-00782-0
  • Yu Y, Shen T, Zhong X, et al. NEK6 is an injury-responsive kinase cooperating with STAT3 in regulation of reactive astrogliosis. Glia. 2022;70:273–286. doi:10.1002/glia.24104
  • He Z, Ni X, Xia L, et al. Overexpression of NIMA-related kinase 6 (NEK6) contributes to malignant growth and dismal prognosis in human breast cancer. Pathol Res Pract. 2018;214:1648–1654. doi:10.1016/j.prp.2018.07.030
  • Simabuco FM, Kobarg J, Severino MB. NEK6 regulates redox balance and DNA damage response in DU-145 prostate cancer cells. Cells. 2023;12:256. doi:10.3390/cells12020256
  • Zhang H, Li B. NIMA-related kinase 6 as an effective target inhibits the hepatocarcinogenesis and progression of hepatocellular carcinoma. Heliyon. 2023;9:e15971. doi:10.1016/j.heliyon.2023.e15971
  • Gerçeker E, Boyacıoglu SO, Kasap E, et al. Never in mitosis gene A-related kinase 6 and Aurora kinase A: new gene biomarkers in the conversion from ulcerative colitis to colorectal cancer. Oncol Rep. 2015;34:1905–1914. doi:10.3892/or.2015.4187
  • Orenay-Boyacioglu S, Kasap E, Gerceker E, et al. Expression profiles of histone modification genes in gastric cancer progression. Mol Biol Rep. 2018;45:2275–2282. doi:10.1007/s11033-018-4389-z
  • Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14:dmm047662. doi:10.1242/dmm.047662
  • Záveský L, Jandáková E, Weinberger V, et al. Ascites in ovarian cancer: microRNA deregulations and their potential roles in ovarian carcinogenesis. Cancer Biomark. 2022;33:1–16. doi:10.3233/CBM-210219
  • Li PP, Li RG, Huang YQ, et al. LncRNA OTUD6B-AS1 promotes paclitaxel resistance in triple negative breast cancer by regulation of miR-26a-5p/MTDH pathway-mediated autophagy and genomic instability. Aging. 2021;13:24171–24191. doi:10.18632/aging.203672
  • Wang Z, Liu T, Xue W, et al. ARNTL2 promotes pancreatic ductal adenocarcinoma progression through TGF/BETA pathway and is regulated by miR-26a-5p. Cell Death Dis. 2020;11:692. doi:10.1038/s41419-020-02839-6
  • Taiwen L, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77:e108–e110. doi:10.1158/0008-5472.CAN-17-0307
  • Chandrashekar DS, Karthikeyan SK, Korla PK, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia. 2022;25:18–27. doi:10.1016/j.neo.2022.01.001
  • Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98–W102. doi:10.1093/nar/gkx247
  • McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:eaav1741. doi:10.1126/science.aav1741
  • Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 2018;46:D239–D245. doi:10.1093/nar/gkx1141
  • Paraskevopoulou MD, Georgakilas G, Kostoulas N, et al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res. 2013;41:W169–173. doi:10.1093/nar/gkt393
  • Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–97. doi:10.1093/nar/gkt1248
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi:10.1006/meth.2001.1262
  • Hashimoto S, Hashimoto A, Muromoto R, et al. Central roles of STAT3-mediated signals in onset and development of cancers: tumorigenesis and immunosurveillance. Cells. 2022;11:2618. doi:10.3390/cells11162618
  • Fu B, Xue W, Zhang H, et al. MicroRNA-325-3p facilitates immune escape of mycobacterium tuberculosis through targeting LNX1 via NEK6 accumulation to promote anti-apoptotic STAT3 signaling. mBio. 2020;11:e00557–20. doi:10.1128/mBio.00557-20
  • Shao M, Lou D, Yang J, et al. Curcumin and wikstroflavone B, a new biflavonoid isolated from Wikstroemia indica, synergistically suppress the proliferation and metastasis of nasopharyngeal carcinoma cells via blocking FAK/STAT3 signaling pathway. Phytomedicine. 2020;79:153341. doi:10.1016/j.phymed.2020.153341
  • Beauchemin MP, Raghunathan RR, Accordino MK, et al. New persistent opioid use among adolescents and young adults with sarcoma. Cancer. 2022;128:2777–2785. doi:10.1002/cncr.34238
  • Savage SA, Mirabello L. Using epidemiology and genomics to understand osteosarcoma etiology. Sarcoma. 2011;2011:548151. doi:10.1155/2011/548151
  • Todosenko N, Khlusov I, Yurova K, et al. Signal pathways and microRNAs in osteosarcoma growth and the dual role of mesenchymal stem cells in oncogenesis. Int J Mol Sci. 2023;24:8993. doi:10.3390/ijms24108993
  • Sayles LC, Breese MR, Koehne AL, et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 2019;9:46–63. doi:10.1158/2159-8290.CD-17-1152
  • Zhang Y, Wang W, Wang Y, et al. NEK2 promotes hepatocellular carcinoma migration and invasion through modulation of the epithelial-mesenchymal transition. Oncol Rep. 2018;39:1023–1033. doi:10.3892/or.2018.6224
  • Sabir SR, Sahota NK, Jones GD, et al. Loss of Nek11 prevents G2/M arrest and promotes cell death in HCT116 colorectal cancer cells exposed to therapeutic DNA damaging agents. PLoS One. 2015;10:e0140975. doi:10.1371/journal.pone.0140975
  • Shi YX, Yin JY, Shen Y, et al. Genome-scale analysis identifies NEK2, DLGAP5 and ECT2 as promising diagnostic and prognostic biomarkers in human lung cancer. Sci Rep. 2017;7:8072. doi:10.1038/s41598-017-08615-5
  • Cao Y, Song J, Chen J, et al. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine. 2018;97:e9630. doi:10.1097/MD.0000000000009630
  • Anuraga G, Wang WJ, Phan NN, et al. Potential prognostic biomarkers of NIMA (never in mitosis, gene A)-related kinase (NEK) family members in breast cancer. J Pers Med. 2021;11:1089. doi:10.3390/jpm11111089
  • Singh V, Jaiswal PK, Ghosh I, et al. The TLK1-Nek1 axis promotes prostate cancer progression. Cancer Lett. 2019;453:131–141. doi:10.1016/j.canlet.2019.03.041
  • Yan Z, Qu J, Li Z, et al. NEK7 promotes pancreatic cancer progression and its expression is correlated with poor prognosis. Front Oncol. 2021;11:705797. doi:10.3389/fonc.2021.705797
  • La Manna S, De Benedictis I, Marasco D. Proteomimetics of natural regulators of JAK-STAT pathway: novel therapeutic perspectives. Front Mol Biosci. 2022;8:792546. doi:10.3389/fmolb.2021.792546
  • McMurray JS, Mandal PK, Liao WS, et al. The consequences of selective inhibition of signal transducer and activator of transcription 3 (STAT3) tyrosine705 phosphorylation by phosphopeptide mimetic prodrugs targeting the Src homology 2 (SH2) domain. JAKSTAT. 2012;1:263–347. doi:10.4161/jkst.22682