191
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Shikonin Inhibits Candida albicans Biofilms via the Ras1-cAMP-Efg1 Signalling Pathway

, , , , , , & ORCID Icon show all
Pages 2653-2662 | Received 15 Apr 2023, Accepted 16 Jun 2023, Published online: 23 Jun 2023

References

  • Wang T, Shao J, Da W, et al. Strong synergism of palmatine and fluconazole/itraconazole against planktonic and biofilm cells of candida species and efflux-associated antifungal mechanism. Front Microbiol. 2018;9:2892. doi:10.3389/fmicb.2018.02892
  • Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18:310–321. doi:10.1016/j.micinf.2016.01.002
  • Finkel JS, Mitchell AP. Genetic control of Candida albicans biofilm development. Nat Rev Microbiol. 2011;9:109–118. doi:10.1038/nrmicro2475
  • Tobudic S, Kratzer C, Lassnigg A, Presterl E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses. 2012;55:199–204. doi:10.1111/j.1439-0507.2011.02076.x
  • Zarei Mahmoudabadi A, Zarrin M, Kiasat N. Biofilm Formation and Susceptibility to Amphotericin B and Fluconazole in Candida albicans. Jundishapur J Microbiol. 2014;7:e17105. doi:10.5812/jjm.17105
  • Sun L, Liao K, Wang D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by Candida albicans. PLoS One. 2015;10:e0117695. doi:10.1371/journal.pone.0117695
  • Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 2007;71:348–376. doi:10.1128/MMBR.00009-06
  • Lan W, Wan S, Gu W, Wang H, Zhou S. Mechanisms behind the inhibition of lung adenocarcinoma cell by shikonin. Cell Biochem Biophys. 2014;70:1459–1467. doi:10.1007/s12013-014-0083-5
  • Liao Z, Yan Y, Dong H, Zhu Z, Jiang Y, Cao Y. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans. Emerg Microbes Infect. 2016;5:e88. doi:10.1038/emi.2016.87
  • Miao H, Zhao L, Li C, et al. Inhibitory effect of Shikonin on Candida albicans growth. Biol Pharm Bull. 2012;35:1956–1963. doi:10.1248/bpb.b12-00338
  • Liao Z, Zhu Z, Li L, et al. Metabonomics on Candida albicans indicate the excessive H3K56ac is involved in the antifungal activity of Shikonin. Emerg Microbes Infect. 2019;8(1):1243–1253. doi:10.1080/22221751.2019.1657362
  • Yan Y, Tan F, Miao H, Wang H, Cao Y. Effect of Shikonin Against Candida albicans Biofilms. Front Microbiol. 2019;10:1085. doi:10.3389/fmicb.2019.01085
  • De Vita D, Friggeri L, D’Auria FD, et al. Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorg Med Chem Lett. 2014;24:1502–1505. doi:10.1016/j.bmcl.2014.02.005
  • Zhao LX, Li DD, Hu DD, et al. Effect of tetrandrine against Candida albicans biofilms. PLoS One. 2013;8:e79671. doi:10.1371/journal.pone.0079671
  • Nobile CJ, Andes DR, Nett JE, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2:e63. doi:10.1371/journal.ppat.0020063
  • Sun LM, Cheng AX, Wu XZ, Zhang HJ, Lou HX. Synergistic mechanisms of retigeric acid B and azoles against Candida albicans. J Appl Microbiol. 2010;108:341–348. doi:10.1111/j.1365-2672.2009.04429.x
  • Miwa T, Takagi Y, Shinozaki M, et al. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans. Eukaryot Cell. 2004;3:919–931. doi:10.1128/EC.3.4.919-931.2004
  • Ramage G, Vande Walle K, Wickes BL, Lopez-Ribot JL. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother. 2001;45:2475–2479. doi:10.1128/AAC.45.9.2475-2479.2001
  • Jung WH, Stateva LI. The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. Microbiology. 2003;149:2961–2976. doi:10.1099/mic.0.26517-0
  • Montelongo-Jauregui D, Saville SP, Lopez-Ribot JL. Contributions of Candida albicans Dimorphism, Adhesive Interactions, and Extracellular Matrix to the Formation of Dual-Species Biofilms with Streptococcus gordonii. mBio. 2019;10. doi:10.1128/mBio.01179-19
  • Reynolds TB, Fink GR. Bakers’ yeast, a model for fungal biofilm formation. Science. 2001;291:878–881. doi:10.1126/science.291.5505.878
  • Suchodolski J, Muraszko J, Korba A, Bernat P, Krasowska A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast. 2020;37:117–129. doi:10.1002/yea.3455
  • Diaz-Garcia J, Arendrup MC, Canton R, et al. Candidemia Candida albicans clusters have higher tendency to form biofilms than singleton genotypesdagger. Med Mycol. 2020;58:887–895. doi:10.1093/mmy/myaa002
  • Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. J Basic Microbiol. 2009;49:579–583. doi:10.1002/jobm.200900035
  • Wu J, Wu D, Zhao Y, et al. Sodium New Houttuyfonate Inhibits Candida albicans Biofilm Formation by Inhibiting the Ras1-cAMP-Efg1 Pathway Revealed by RNA-seq. Front Microbiol. 2020;11:2075. doi:10.3389/fmicb.2020.02075
  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 2008;67:47–62. doi:10.1111/j.1365-2958.2007.06013.x
  • Panariello BHD, Klein MI, Pavarina AC, Duarte S. Inactivation of genes TEC1 and EFG1 in Candida albicans influences extracellular matrix composition and biofilm morphology. J Oral Microbiol. 2017;9:1385372. doi:10.1080/20002297.2017.1385372
  • Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 2010;9:569–577. doi:10.1128/EC.00321-09
  • Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011;10:168–173. doi:10.1128/EC.00279-10
  • Ene IV, Bennett RJ. Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans. Eukaryot Cell. 2009;8:1909–1913. doi:10.1128/EC.00245-09
  • Burgain A, Pic E, Markey L, Tebbji F, Kumamoto CA, Sellam A. A novel genetic circuitry governing hypoxic metabolic flexibility, commensalism and virulence in the fungal pathogen Candida albicans. PLoS Pathog. 2019;15:e1007823. doi:10.1371/journal.ppat.1007823