153
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Differences in the Proportion of CYP2C19 Loss-of-Function Between Cerebral Infarction and Coronary Artery Disease Patients

, , , , , , & ORCID Icon show all
Pages 3473-3481 | Received 30 May 2023, Accepted 03 Aug 2023, Published online: 14 Aug 2023

References

  • Tapeinos C, Gao H, Bauleth-Ramos T, Santos HA. Progress in stimuli-responsive biomaterials for treating cardiovascular and cerebrovascular diseases. Small. 2022;18(36):e2200291. doi:10.1002/smll.202200291
  • Turana Y, Tengkawan J. Hypertension and stroke in Asia: a comprehensive review from HOPE Asia. J Clin Hypertens. 2021;23(3):513–521. doi:10.1111/jch.14099
  • Ji E, Lee S. Antibody-based therapeutics for atherosclerosis and cardiovascular diseases. Int J Mol Sci. 2021;22(11):5770. doi:10.3390/ijms22115770
  • Malakar AK, Choudhury D, Halder B, Paul P, Uddin A, Chakraborty S. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–16823. doi:10.1002/jcp.28350
  • Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: from mechanisms to treatment (Review). Int J Mol Med. 2022;49(2):15. doi:10.3892/ijmm.2021.5070
  • Passacquale G, Sharma P, Perera D, Ferro A. Antiplatelet therapy in cardiovascular disease: current status and future directions. Br J Clin Pharmacol. 2022;88(6):2686–2699. doi:10.1111/bcp.1522
  • Akkaif MA, Sha’aban A. Coronary Heart Disease (CHD) in elderly patients: which drug to choose, ticagrelor and clopidogrel? A systematic review and meta-analysis of randomized controlled trials. J Cardiovasc Dev Dis. 2021;8(10):123. doi:10.3390/jcdd8100123
  • Lee CR, Luzum JA, Sangkuhl K, et al. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin Pharmacol Ther. 2022;112(5):959–967. doi:10.1002/cpt.252
  • Akkaif MA, Daud NAA, Noor DAM, et al. Platelet reactivity index after treatment of clopidogrel versus ticagrelor based on CYP2C19 genotypes among patients undergoing percutaneous coronary intervention: results of a randomized study. Eur Heart J. 2023;44(Supplement_1). doi:10.1093/eurheartj/ehac779.120
  • Akkaif MA, Daud NAA, Sha’aban A. The role of genetic polymorphism and other factors on Clopidogrel Resistance (CR) in an Asian Population with Coronary Heart Disease (CHD). Molecules. 2021;26(7):1987. doi:10.3390/molecules26071987
  • Li YJ, Chen X, Tao LN, Hu XY, Wang XL, Song YQ. Association between CYP2C19 polymorphisms and clinical outcomes in patients undergoing stent procedure for cerebral artery stenosis. Sci Rep. 2021;11(1):5974. doi:10.1038/s41598-021-85580-0
  • de Lara DV, de Melo DO. Pharmacogenetics of clopidogrel and warfarin in the treatment of cardiovascular diseases: an overview of reviews. Pharmacogenomics. 2022;23(7):443–452. doi:10.2217/pgs-2021-0158
  • Ma L, Yuan Y, Li J, Yu C, Zhao J. Distribution of CYP2C19, ABCB1 and PON1 polymorphisms in Chinese Han, Hui, Uygur and Kazak patients with coronary atherosclerotic heart disease. Int J Immunogenet. 2020;47(6):539–545. doi:10.1111/iji.12511
  • Yang E, Kim S, Kim B, et al. Night-time gastric acid suppression by tegoprazan compared to vonoprazan or esomeprazole. Br J Clin Pharmacol. 2022;88(7):3288–3296. doi:10.1111/bcp.15268
  • Han D, Beecy A, Anchouche K, et al. Risk reclassification with coronary computed tomography angiography-visualized nonobstructive coronary artery disease according to 2018 American College of Cardiology/American Heart Association Cholesterol Guidelines (from the Coronary Computed Tomography Angiography Evaluation for Clinical Outcomes: an International Multicenter Registry [CONFIRM]). Am J Cardiol. 2019;124(9):1397–1405. doi:10.1016/j.amjcard.2019.07.045
  • Cai N, Li C, Gu X, et al. CYP2C19 loss-of-function is associated with increased risk of hypertension in a Hakka population: a case-control study. BMC Cardiovasc Disord. 2023;23(1):185. doi:10.1186/s12872-023-03207-w
  • Tan DS, Aw JWX, Winther M, et al. CYP2C19 phenotype in South-East Asian Acute Coronary Syndrome patients and impact on major adverse cardiovascular events. J Clin Pharm Ther. 2020;45(1):52–58. doi:10.1111/jcpt.13062
  • He L, Chen S, Li J, et al. Genetic and phenotypic frequency distribution of CYP2C9, CYP2C19 and CYP2D6 in over 3200 Han Chinese. Clin Exp Pharmacol Physiol. 2020;47(10):1659–1663. doi:10.1111/1440-1681.13357
  • Lee YC, Liao YC, Chang FC, Huang HC, Tsai JY, Chung CP. Investigating CYP2C19 loss-of-function allele statuses and their association with stroke of different etiologies in a Taiwanese population. J Chin Med Assoc. 2019;82(6):469–472. doi:10.1097/JCMA.0000000000000101
  • Vu NP, Nguyen HTT, Tran NTB, et al. CYP2C19 genetic polymorphism in the Vietnamese population. Ann Hum Biol. 2019;46(6):491–497. doi:10.1080/03014460.2019.1687750
  • Sukprasong R, Chuwongwattana S, Koomdee N, et al. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep. 2021;11(1):12343. doi:10.1038/s41598-021-90969-y
  • Dorji PW, Wangchuk S, Boonprasert K, Tarasuk M, Na-Bangchang K. Pharmacogenetic relevant polymorphisms of CYP2C9, CYP2C19, CYP2D6, and CYP3A5 in Bhutanese population. Drug Metab Pers Ther. 2019;34(4). doi:10.1515/dmpt-2019-0020
  • Arvanitidis K, Ragia G, Iordanidou M, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–426. doi:10.1111/j.1472-8206.2007.00510.x
  • Afilal D, Basselam MA, Brakez Z, Chouham S, Brehm A, Izaabel EH. Genetic polymorphism of drug-metabolizing enzymes CYP2C9 and CYP2C19 in Moroccan population. Genet Test Mol Biomarkers. 2017;21(5):298–304. doi:10.1089/gtmb.2016.0304
  • Djaffar Jureidini I, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N. Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep. 2011;38(8):5449–5452. doi:10.1007/s11033-011-0700-y
  • Bravo-Villalta HV, Yamamoto K, Nakamura K, Bayá A, Okada Y, Horiuchi R. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study. Eur J Clin Pharmacol. 2005;61(3):179–184. doi:10.1007/s00228-004-0890-5
  • de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. Pharmacogenomics J. 2021;21(2):140–151. doi:10.1038/s41397-020-00190-9
  • Gronich N, Lavi I, Lejbkowicz F, et al. Ischemic stroke and myocardial ischemia in clopidogrel users and the association with CYP2C19 loss-of-function homozygocity: a real-world study. Pharmacogenomics J. 2021;21(3):402–408. doi:10.1038/s41397-021-00218-8
  • Patel PD, Vimalathas P, Niu X, et al. CYP2C19 loss-of-function is associated with increased risk of ischemic stroke after transient ischemic attack in intracranial atherosclerotic disease. J Stroke Cerebrovasc Dis. 2021;30(2):105464. doi:10.1016/j.jstrokecerebrovasdis.2020.105464
  • Fisslthaler B, Fleming I, Busse R. EDHF: a cytochrome P450 metabolite in coronary arteries. Semin Perinatol. 2000;24(1):15–19. doi:10.1016/s0146-0005(00)80048-8
  • Chawengsub Y, Gauthier KM, Campbell WB. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2009;297(2):H495–H507. doi:10.1152/ajpheart.00349.2009
  • Fleming I, Michaelis UR, Bredenkötter D, et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 2001;88(1):44–51. doi:10.1161/01.res.88.1.44
  • Malekmohammad K, Sewell RDE. Antioxidants and atherosclerosis: mechanistic aspects. Biomolecules. 2019;9(8):301. doi:10.3390/biom9080301
  • Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: lessons from murine genetic models. Free Radic Biol Med. 2020;149:8–22. doi:10.1016/j.freeradbiomed.2019.10.011