449
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Genetic Variants Associated with Acne Vulgaris

&
Pages 3843-3856 | Received 18 May 2023, Accepted 11 Aug 2023, Published online: 28 Aug 2023

References

  • Hazarika N. Acne vulgaris: new evidence in pathogenesis and future modalities of treatment. J Dermatolog Treat. 2021;32(3):277–285. doi:10.1080/09546634.2019.1654075
  • Bernales salinas A. Acne vulgaris: role of the immune system. Int J Dermatol. 2021;60(9):1076–1081. doi:10.1111/ijd.15415
  • Siemens HW. Die Vererbung in der Ätiologie der Hautkrankheiten [Heredity in the etiology of skin diseases]. Berlin Heidelberg: Springer; 1929. German.
  • Siemens HW. Die Zwillingspathologie: Ihre Bedeutung Ihre Methodik Ihre Bisherigen Ergebnisse [The pathology of twins: its meaning · its methodology · its results so far]; 1924. German.
  • Bataille V, Snieder H, MacGregor AJ, et al. The influence of genetics and environmental factors in the pathogenesis of acne: a twin study of acne in women. J Invest Dermatol. 2002;119:1317–1322. doi:10.1046/j.1523-1747.2002.19621.x
  • Thiboutot DM. Inflammasome activation by Propionibacterium acnes: the story of IL-1 in acne continues to unfold. J Invest Dermatol. 2014;134:595–597. doi:10.1038/jid.2013.528
  • Dominici R, Cattaneo M, Malferrari G, et al. Cloning and functional analysis of the allelic polymorphism in the transcription regulatory region of interleukin-1α. Immunogenetics. 2002;54:82–86. doi:10.1007/s00251-002-0445-9
  • Hull J, Thomson A, Kwiatkowski D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax. 2000;55:1023–1027. doi:10.1136/thorax.55.12.1023
  • Sobjanek M, Zablotna M, Glen J, et al. Polymorphism in interleukin 1A but not in interleukin 8 gene predisposes to acne vulgaris in Polish population. J Eur Acad Dermatol Venereol. 2013;27(2):259–260. doi:10.1111/j.1468-3083.2011.04422.x
  • Ibrahim AA, Salem RM, El-Shimi OS, et al. IL 1A (−889) gene polymorphism is associated with the effect of diet as a risk factor in Acne Vulgaris. J Cosmet Dermatol. 2019;18:333–336. doi:10.1111/jocd.12516
  • Younis S, Javed Q. The interleukin-6 and interleukin-1A gene promoter polymorphism is associated with the pathogenesis of acne vulgaris. Arch Dermatol Res. 2015;307(4):365–370. doi:10.1007/s00403-014-1519-x
  • Szabó K, Tax G, Kis K, et al. Interleukin-1A +4845(G> T) polymorphism is a factor predisposing to acne vulgaris. Tissue Antigens. 2010;76:411–415. doi:10.1111/j.1399-0039.2010.01530.x
  • Zhang M, Qureshi AA, Hunter DJ, et al. A genome-wide association study of severe teenage acne in European Americans. Hum Genet. 2014;133:259–264. doi:10.1007/s00439-013-1374-4
  • Mishra P, Prasad KN, Singh K, et al. Tumor necrosis factor-α and interleukin-1β gene polymorphisms and risk of brain abscess in North Indian population. Cytokine. 2015;75(1):159–164. doi:10.1016/j.cyto.2015.07.009
  • Moreira PR, De Sá AR, Xavier GM, et al. A functional interleukin-1β gene polymorphism is associated with chronic periodontitis in a sample of Brazilian individuals. J Periodontal Res. 2005;40:306–311. doi:10.1111/j.1600-0765.2005.00801.x
  • Borkowska P, Kucia K, Rzezniczek S, et al. Interleukin-1beta promoter (−31T/C and-511C/T) polymorphisms in major recurrent depression. J Mol Neurosci. 2011;44:12–16. doi:10.1007/s12031-011-9507-5
  • Qin M, Pirouz A, Kim MH, et al. Propionibacterium acnes induces IL-1β secretion via the NLRP3 inflammasome in human monocytes. J Invest Dermatol. 2014;134:381–388. doi:10.1038/jid.2013.309
  • Kistowska M, Gehrke S, Jankovic D, et al. IL-1b drives inflammatory responses to propionibacterium acnes in vitro and in vivo. J Invest Dermatol. 2014;134:677–685. doi:10.1038/jid.2013.438
  • Akoglu G, Tan C, Ayvaz DC, et al. Tumor necrosis factor α-308 G/A and interleukin 1 β-511 C/T gene polymorphisms in patients with scarring acne. J Cosmet Dermatol. 2019;18(1):395–400. doi:10.1111/jocd.12558
  • ElAttar Y, Mourad B, Alngomy HA, et al. Study of interleukin-1 beta expression in acne vulgaris and acne scars. J Cosmet Dermatol. 2022;21(10):4864–4870. doi:10.1111/jocd.14852
  • Kishimoto T. The biology of interleukin-6. Blood. 1989;74(1):1–10. doi:10.1182/blood.V74.1.1.1
  • Cui YX, Fu CW, Jiang F, et al. Association of the interleukin-6 polymorphisms with systemic lupus erythematosus: a meta-analysis. Lupus. 2015;24(12):1308–1317. doi:10.1177/0961203315588971
  • You C, Li X, Li Y, et al. Association analysis of single nucleotide polymorphisms of proinflammatory cytokine and their receptors genes with rheumatoid arthritis in northwest Chinese Han population. Cytokine. 2013;61(1):133–138. doi:10.1016/j.cyto.2012.09.007
  • Sardana K, Verma G. Propionibacterium acnes and the Th1/Th17 Axis, implications in acne pathogenesis and treatment. Indian J Dermatol. 2017;62(4):392–394. doi:10.4103/ijd.IJD_483_16
  • Rasmussen L, Delabio R, Horiguchi L, et al. Association between interleukin 6 gene haplotype and Alzheimer’s disease: a Brazilian case-control study. J Alzheimers Dis. 2013;36(4):733–738. doi:10.3233/JAD-122407
  • Ragab M, Hassan EM, Elneily D, et al. Association of interleukin-6 gene promoter polymorphism with acne vulgaris and its severity. Clin Exp Dermatol. 2019;44(6):637–642. doi:10.1111/ced.13864
  • Chen X, Min S, Chen C, et al. Influence of RETN, IL-1, and IL-6 gene polymorphisms on the risk of acne vulgaris in the Chinese population. J Cosmet Dermatol. 2022;21:4965–4973. doi:10.1111/jocd.14911
  • Hussain S, Iqbal T, Sadiq I, et al. Polymorphism in the IL-8 gene promoter and the risk of acne vulgaris in a Pakistani population. Iran J Allergy Asthma Immunol. 2015;14:443–449.
  • Li L, Wu Y, Li L, et al. The tumour necrosis factor-α 308G> A genetic polymorphism may contribute to the pathogenesis of acne: a meta-analysis. Clin Exp Dermatol. 2015;40:682–687. doi:10.1111/ced.12660
  • Tian LM, Xie HF, Yang T, et al. Association study of tumor necrosis factor receptor type 2 M196R and toll-like receptor 2 Arg753Gln polymorphisms with acne vulgaris in a Chinese Han ethnic group. Dermatology. 2010;221(3):276–284. doi:10.1159/000319851
  • Baz K, Emin Erdal M, Yazıcı AC, et al. Association between tumor necrosis factor-alpha gene promoter polymorphism at position-308 and acne in Turkish patients. Arch Dermatol Res. 2008;300:371–376. doi:10.1007/s00403-008-0871-0
  • Al-Shobaili HA, Salem TA, Alzolibani AA, et al. Tumor necrosis factor-α- 308 G/A and interleukin 10-1082 A/G gene polymorphisms in patients with acne vulgaris. J Dermatol Sci. 2012;68(1):52–55. doi:10.1016/j.jdermsci.2012.07.001
  • Grech I, Giatrakos S, Damoraki G, et al. Impact of TNF haplotypes in the physical course of acne vulgaris. Dermatology. 2014;228:152–157. doi:10.1159/000356388
  • Yang JK, Wu WJ, Qi J, et al. TNF-308 G/A polymorphism and risk of acne vulgaris: a meta-analysis. PLoS One. 2014;9:e87806. doi:10.1371/journal.pone.0087806
  • Aisha NM, Haroon J, Hussain S, et al. Association between tumour necrosis-α gene polymorphisms and acne vulgaris in a Pakistani population. Clin Exp Dermatol. 2016;41(3):297–301. doi:10.1111/ced.12757
  • Sobjanek M, Zabłotna M, Nedoszytko B, et al. Lack of association between the promoter polymorphisms at positions-238 and-308 of the tumour necrosis factor alpha gene and acne vulgaris in Polish patients. J Eur Acad Dermatol Venereol. 2009;23(3):331–332. doi:10.1111/j.1468-3083.2008.02858.x
  • Szabó K, Tax G, Teodorescu-Brinzeu D, et al. TNFα gene polymorphisms in the pathogenesis of acne vulgaris. Arch Dermatol Res. 2011;303(1):19–27. doi:10.1007/s00403-010-1050-7
  • Younis S, Shamim S, Nisar K, et al. Association of TNF-α polymorphisms (− 857,− 863 and− 1031), TNF-α serum level and lipid profile with acne vulgaris. Saudi J Biol Sci. 2021;28:6615–6620. doi:10.1016/j.sjbs.2021.07.042
  • Jang JC, Chen G, Wang SH, et al. Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden. PLoS Pathog. 2015;11:e1004579. doi:10.1371/journal.ppat.1004579
  • Taouis M, Benomar Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol Cell Endocrinol. 2021;533:111341. doi:10.1016/j.mce.2021.111341
  • Acquarone E, Monacelli F, Borghi R, et al. Resistin: a reappraisal. Mech Ageing Dev. 2019;178:46–63. doi:10.1016/j.mad.2019.01.004
  • Younis S, Blumenberg M, Javed Q. Resistin gene polymorphisms are associated with acne and serum lipid levels, providing a potential nexus between lipid metabolism and inflammation. Arch Dermatol Res. 2016;308:229–237. doi:10.1007/s00403-016-1626-y
  • Al-Hilali HA, AL-Anssari MJ. Resistin (RETN) Gene rs1862513 polymorphisms and Acne vulgaris patients. Int J Curr Microbiol App Sci. 2016;5:415–422. doi:10.20546/ijcmas.2016.512.045
  • Hussain S, Faraz A, Iqbal T. The RETN gene rs1862513 polymorphism as a novel predisposing marker for familial Acne vulgaris in a Pakistani population. Iran J Basic Med Sci. 2015;18:526–528.
  • Shehata WA, Maraee A, Wahab TAA, et al. Serum resistin levels and resistin gene polymorphism in patients with acne vulgaris: does it correlate with disease severity? Int J Dermatol. 2021;60:1270–1277. doi:10.1111/ijd.15727
  • Akcılar R, Dizen Namdar N, Arslan Utku S. Association between resistin gene (− 420 C> G) polymorphism and acne vulgaris. J Cosmet Dermatol. 2022;21:1651–1655. doi:10.1111/jocd.14264
  • Miller WL. Early steps in androgen biosynthesis: from cholesterol to DHEA. Baillieres Clin Endocrinol Metab. 1998;12:67–81. doi:10.1016/S0950-351X(98)80461-8
  • He L, Yang Z, Yu H, et al. The relationship between CYP17 −34T/C polymorphism and acne in Chinese subjects revealed by sequencing. Dermatology. 2006;212:338–342. doi:10.1159/000092284
  • Tian LM, Xie HF, Yang T, et al. Correlation between CYP17 gene polymorphisms and female post adolescent acne in Han population in Hunan Province. Nan Fang yi ke da xue xue bao. 2010;30:1590–1596.
  • Chamaie-Nejad F, Saeidi S, Najafi F, et al. Association of the CYP17 MSP AI (T-34C) and CYP19 codon 39 (Trp/Arg) polymorphisms with susceptibility to acne vulgaris. Clin Exp Dermatol. 2018;43:183–186. doi:10.1111/ced.13321
  • Heng AHS, Say YH, Sio YY, et al. Gene variants associated with acne vulgaris presentation and severity: a systematic review and meta-analysis. BMC Med Genomics. 2021;14:1–42. doi:10.1186/s12920-021-00953-8
  • Wang L, Lu X, Wang D, et al. CYP19 gene variant confers susceptibility to endometriosis-associated infertility in Chinese women. Exp Mol Med. 2014;46:e103–e103. doi:10.1038/emm.2014.31
  • Napoli N, Rastelli A, Ma C, et al. Genetic polymorphism at Val80 (rs700518) of the CYP19A1 gene is associated with aromatase inhibitor associated bone loss in women with ER + breast cancer. Bone. 2013;55:309–314. doi:10.1016/j.bone.2013.04.021
  • Ebrahimi A, Rahimi Z, Ghadami Z, et al. Association between CYP19A. Int J Mol Cell Med. 2019;8(2):162–168. doi:10.22088/IJMCM.BUMS.8.2.162
  • Yang T, Wu WJ, Tian LM, et al. The associations of androgen-related genes CYP21A2 and CYP19A1 with severe acne vulgaris in patients from Southwest China. Clin Cosmet Investig Dermatol. 2021;14:313–331. doi:10.2147/CCID.S293171
  • Darmani E, Darwin E, Damayanti I, et al. Genetic polymorphism in CYP1A1 affected susceptibility to acne vulgaris in Pekanbaru Indonesian Population, Desember 2013-Maret 2014. Bali Med J. 2019;8:169–172. doi:10.15562/bmj.v8i1.1243
  • Fingleton B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim Biophys Acta Mol Cell Res. 2017;1864:2036–2042. doi:10.1016/j.bbamcr.2017.05.010
  • Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73.
  • Lee SE, Kim JM, Jeong SK, et al. Protease-activated receptor-2 mediates the expression of inflammatory cytokines, antimicrobial peptides, and matrix metalloproteinases in keratinocytes in response to Propionibacterium acnes. Arch Dermatol Res. 2010;302:745–756. doi:10.1007/s00403-010-1074-z
  • Price SJ, Greaves DR, Watkins H. Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem. 2001;276:7549–7558. doi:10.1074/jbc.M010242200
  • Fernandez-Patron C, Kassiri Z, Leung D. Modulation of systemic metabolism by MMP-2: from MMP-2 deficiency in mice to MMP-2 deficiency in patients. Compr Physiol. 2016;6:1935–1949.
  • De Groef L, Salinas-Navarro M, Van Imschoot G, et al. Decreased TNF levels and improved retinal ganglion cell survival in MMP-2 null mice suggest a role for MMP-2 as TNF sheddase. Mediators Inflamm. 2015;2015:108617. doi:10.1155/2015/108617
  • Yaykasli KO, Turan H, Kaya E, et al. Polymorphisms in the promoters of MMP-2 and TIMP-2 genes in patients with acne vulgaris. Int J Clin Exp Med. 2013;6:967–972.
  • Gao R, Yu H, Zhao Q, et al. Role of MMP-2 (−1306 C/T) and TIMP-2 (−418G/C) polymorphism in Chinese Han patients with Acne Vulgaris. Biomed Res Int. 2019;2019:2364581. doi:10.1155/2019/2364581
  • Gupta N, Bishnoi A, Mathew D, et al. Hypertrophic post-acne scarring is associated with a single nucleotide polymorphism (rs243865) in the matrix metalloproteinase-2 gene. J Dtsch Dermatol Ges. 2020;18:1426–1435.
  • Wen X, Du H, Hao X, et al. TIMP2 genetic variation rs4789932 may associate with an increased risk of developing acne scarring based on a case-control study of Chinese Han population. J Cosmet Dermatol. 2022;21:4740–4747. doi:10.1111/jocd.14749
  • Meng C, Yin X, Liu J, et al. TIMP-1 is a novel serum biomarker for the diagnosis of colorectal cancer: a meta-analysis. PLoS One. 2018;13:e0207039. doi:10.1371/journal.pone.0207039
  • Mohammed SMA, Sabry HH, Ameen SG, et al. MMP-1 (519 A/G) and TIMP-1 (372 T/C) genes polymorphism in an Egyptian sample of Acne vulgaris patients. J Cosmet Dermatol. 2022;21(4):1705–1711. doi:10.1111/jocd.14316
  • Suh DH, Kwon HH. What’s new in the physiopathology of acne? Br J Dermatol. 2015;172:13–19. doi:10.1111/bjd.13634
  • Rahaman SMA, De D, Handa S, et al. Association of insulin-like growth factor (IGF)-1 gene polymorphisms with plasma levels of IGF-1 and acne severity. J Am Acad Dermatol. 2016;75:768–773. doi:10.1016/j.jaad.2016.05.019
  • El-Tahlawi S, Ezzat Mohammad N, Mohamed El-Amir A, et al. Survivin and insulin-like growth factor-I: potential role in the pathogenesis of acne and post-acne scar. Scars Burn Heal. 2019;5:2059513118818031. doi:10.1177/2059513118818031
  • Tasli L, Turgut S, Kacar N, et al. Insulin-like growth factor-I gene polymorphism in acne vulgaris. J Eur Acad Dermatol Venereol. 2013;27(2):254–257. doi:10.1111/j.1468-3083.2011.04299.x
  • Akpinar Kara Y. Evaluation of serum insulin-like growth factor-1, insulin, glucose levels in patients with adolescent and post-adolescent acne. J Cosmet Dermatol. 2022;21:1292–1296. doi:10.1111/jocd.14327
  • Rodighiero E, Bertolani M, Saleri R, et al. Do acne treatments affect insulin-like growth factor-1 serum levels? A clinical and laboratory study on patients with acne vulgaris. Dermatol Ther. 2020;33:e13439. doi:10.1111/dth.13439
  • Abdelaal EB, Abdelsamie HM, Attia SM, et al. Association of a novel Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)-3928C/T and GM-CSF(3606T⁄C) Promoter gene polymorphisms with the pathogenesis and severity of acne vulgaris: a case-controlled study. J Cosmet Dermatol. 2021;20:3679–3683. doi:10.1111/jocd.14481
  • Petridis C, Navarini AA, Dand N, et al. Genome-wide meta-analysis implicates mediators of hair follicle development and morphogenesis in risk for severe acne. Nat Commun. 2018;9:5075. doi:10.1038/s41467-018-07459-5
  • Basha MA, Abdelmageed RG, Bayomy NR. Serum level of calprotectin as a potential marker of inflammation in acne vulgaris diagnosis and severity estimation. J Clin Med. 2021;84:2323–2328.
  • Fouda I, Obaid ZM, Hegazy SF, et al. Calprotectin in acne vulgaris: a possible contributory role. J Cosmet Dermatol. 2021;20:621–625. doi:10.1111/jocd.13574
  • Korkmaz S, Fıçıcıoğlu SK. Calprotectin can play an inflammatory role in acne vulgaris. Postepy Dermatol Alergol. 2018;35:397–399. doi:10.5114/ada.2017.71286
  • Farag AGA, Helal SG, Labib AZ, et al. Study of calprotectin gene polymorphism and serum level in acne vulgaris patients. Int J Dermatol. 2022;61(10):1262–1269. doi:10.1111/ijd.16268
  • Pang Y, He CD, Liu Y, et al. Combination of short CAG and GGN repeats in the androgen receptor gene is associated with acne risk in North East China. J Eur Acad Dermatol Venereol. 2008;22:1445–1451. doi:10.1111/j.1468-3083.2008.02891.x