210
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Aftereffects in Epigenetic Age Related to Cognitive Decline and Inflammatory Markers in Healthcare Personnel with Post-COVID-19: A Cross-Sectional Study

ORCID Icon, , , , , , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 4953-4964 | Received 01 Jul 2023, Accepted 16 Oct 2023, Published online: 31 Oct 2023

References

  • Wang K, Liu H, Hu Q, et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther. 2022;7(1):374. doi:10.1038/s41392-022-01211-8
  • Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging. 2018;10(4):573–591. doi:10.18632/aging.101414
  • Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19(6):371–384. doi:10.1038/s41576-018-0004-3
  • Zolman O. Horvath-Levine PhenoAge Calculator (defunct). 20one Consulting Ltd; 2023. Available from: https://www.oliverzolman.com/phenoage-calculator. Accessed October 27, 2023.
  • Cao X, Li W, Wang T, et al. Accelerated biological aging in COVID-19 patients. Nat Commun. 2022;13(1):2135. doi:10.1038/s41467-022-29801-8
  • Mongelli A, Barbi V, Gottardi Zamperla M, et al. Evidence for biological age acceleration and telomere shortening in COVID-19 survivors. Int J Mol Sci. 2021;22(11):6151. doi:10.3390/ijms22116151
  • Sivan M, Taylor S. NICE guideline on long covid. BMJ. 2020;371:m4938. doi:10.1136/bmj.m4938
  • Soriano JB, Murthy S, Marshall JC, Relan P, Diaz JV. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect Dis. 2022;22(4):e102–e107. doi:10.1016/S1473-3099(21)00703-9
  • Azcue N, Gómez-Esteban JC, Acera M, et al. Brain fog of post-COVID-19 condition and chronic fatigue syndrome, same medical disorder? J Transl Med. 2022;20(1):569. doi:10.1186/s12967-022-03764-2
  • Tavares-Júnior JWL, de Souza ACC, Borges JWP, et al. COVID-19 associated cognitive impairment: a systematic review. Cortex. 2022;152:77–97. doi:10.1016/j.cortex.2022.04.006
  • Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022;18(5):1047–1066. doi:10.1002/alz.12644
  • Ceban F, Ling S, Lui LMW, et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain Behav Immun. 2022;101:93–135. doi:10.1016/j.bbi.2021.12.020
  • Hadad R, Khoury J, Stanger C, et al. Cognitive dysfunction following COVID-19 infection. J Neurovirol. 2022;28(3):430–437. doi:10.1007/s13365-022-01079-y
  • Miskowiak KW, Bech JL, Henriksen AC, Johnsen S, Podlekareva D, Marner L. Cerebral metabolic rate of glucose and cognitive tests in long COVID patients. Brain Sci. 2023;13(1). doi:10.3390/brainsci13010023
  • Herrera E, Pérez-Sánchez M, San Miguel-Abella R, et al. Cognitive impairment in young adults with post COVID-19 syndrome. Sci Rep. 2023;13(1):6378. doi:10.1038/s41598-023-32939-0
  • Maamar M, Artime A, Pariente E, et al. Post-COVID-19 syndrome, low-grade inflammation and inflammatory markers: a cross-sectional study. Curr Med Res Opin. 2022;38(6):901–909. doi:10.1080/03007995.2022.2042991
  • Saylik F, Sarıkaya R. Can systemic immune-inflammation index detect the presence of exaggerated morning blood pressure surge in newly diagnosed treatment-naive hypertensive patients? Clin Exp Hypertens. 2021;43(8):772–779. doi:10.1080/10641963.2021.1960366
  • Ye Z, Hu T, Wang J, et al. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: a systematic review and meta-analysis. Systematic Review. Front Cardiovasc Med. 2022;9. doi:10.3389/fcvm.2022.933913
  • Nalbandian A, Desai AD, Wan EY. Post-COVID-19 Condition. Annu Rev Med. 2023;74(1):55–64. doi:10.1146/annurev-med-043021-030635
  • Tombaugh TN, McDowell I, Kristjansson B, Hubley AM. Mini-Mental State Examination (MMSE) and the Modified MMSE (3MS): a psychometric comparison and normative data. Psychol Assess. 1996;8:48–59. doi:10.1037/1040-3590.8.1.48
  • Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi:10.1111/j.1532-5415.2005.53221.x
  • Aguilar-Navarro SG, Mimenza-Alvarado AJ, Palacios-García AA, Samudio-Cruz A, Gutiérrez-Gutiérrez LA, Ávila-Funes JA. Validez y confiabilidad del MoCA (Montreal Cognitive Assessment) para el tamizaje del deterioro cognoscitivo en méxico. Revista Colombiana de Psiquiatría. 2018;47(4):237–243. doi:10.1016/j.rcp.2017.05.003
  • Beaman S, Beaman PE, Garcia-Peña C, et al. Validation of a modified version of the mini-mental state examination (MMSE) in Spanish. Aging Neuropsychol Cogn. 2004;11(1):1–11. doi:10.1076/anec.11.1.1.29366
  • Avila-Avila A, Sosa-Tinoco E, Pacheco-Pacheco J, et al. [Guidelines for Comprehensive Geriatric Assessment Instruments].Guía de instrumentos de evaluación geriátrica integral. [National Institute of Geriatrics] Instituto Nacional de Geriatría; 2020. Spanish. Available from: http://www.geriatria.salud.gob.mx/descargas/publicaciones/Guia_InstrumentosGeriatrica_18-02-2020.pdf. Accessed July 1, 2021.
  • Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect. 2020;81(1):e6–e12. doi:10.1016/j.jinf.2020.04.002
  • Regolo M, Vaccaro M, Sorce A, et al. Neutrophil-to-Lymphocyte Ratio (NLR) is a promising predictor of mortality and admission to intensive care unit of COVID-19 patients. J Clin Med. 2022;11(8):2235. doi:10.3390/jcm11082235
  • Ghobadi H, Mohammadshahi J, Javaheri N, Fouladi N, Mirzazadeh Y, Aslani MR. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Original Research. Front Med. 2022;9. doi:10.3389/fmed.2022.916453
  • Koestler DC, Usset J, Christensen BC, et al. DNA methylation-derived neutrophil-to-lymphocyte ratio: an epigenetic tool to explore cancer inflammation and outcomes. Cancer Epidemiol Biomarkers Prev. 2017;26(3):328–338. doi:10.1158/1055-9965.Epi-16-0461
  • Xu W, Zhang F, Shi Y, Chen Y, Shi B, Yu G. Causal association of epigenetic aging and COVID-19 severity and susceptibility: a bidirectional Mendelian randomization study. Review. Front Med. 2022;9. doi:10.3389/fmed.2022.989950
  • Citu C, Gorun F, Motoc A, et al. The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 Mortality. Diagnostics. 2022;12(1):122. doi:10.3390/diagnostics12010122
  • Chlamydas S, Papavassiliou AG, Piperi C. Epigenetic mechanisms regulating COVID-19 infection. Epigenetics. 2021;16(3):263–270. doi:10.1080/15592294.2020.1796896
  • Franzen J, Nüchtern S, Tharmapalan V, et al. Epigenetic clocks are not accelerated in COVID-19 patients. Int J Mol Sci. 2021;22(17):9306. doi:10.3390/ijms22179306
  • Xu M, Chen R, Liu L, et al. Systemic immune-inflammation index and incident cardiovascular diseases among middle-aged and elderly Chinese adults: the Dongfeng-Tongji cohort study. Atherosclerosis. 2021;323:20–29. doi:10.1016/j.atherosclerosis.2021.02.012
  • Pilotto A, Cristillo V, Cotti Piccinelli S, et al. Long-term neurological manifestations of COVID-19: prevalence and predictive factors. Neurol Sci. 2021;42(12):4903–4907. doi:10.1007/s10072-021-05586-4
  • de Erausquin GA, Snyder H, Brugha TS, et al. Chronic neuropsychiatric sequelae of SARS-CoV-2: protocol and methods from the Alzheimer’s association global consortium. Alzheimers Dement. 2022;8(1):e12348. doi:10.1002/trc2.12348
  • Bolattürk ÖF, Soylu AC. Evaluation of cognitive, mental, and sleep patterns of post-acute COVID-19 patients and their correlation with thorax CT. Acta Neurol Belg. 2022;123:1089–1093. doi:10.1007/s13760-022-02001-3
  • Hugon J, Msika E-F, Queneau M, Farid K, Paquet C. Long COVID: cognitive complaints (brain fog) and dysfunction of the cingulate cortex. J Neurol. 2022;269(1):44–46. doi:10.1007/s00415-021-10655-x
  • Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci USA. 2022;119(35):e2200960119. doi:10.1073/pnas.2200960119
  • Cecchetti G, Agosta F, Canu E, et al. Cognitive, EEG, and MRI features of COVID-19 survivors: a 10-month study. J Neurol. 2022;269(7):3400–3412. doi:10.1007/s00415-022-11047-5
  • Logue JK, Franko NM, McCulloch DJ, et al. Sequelae in adults at 6 months after COVID-19 infection. JAMA Network Open. 2021;4(2):e210830–e210830. doi:10.1001/jamanetworkopen.2021.0830
  • Mazza MG, Palladini M, De Lorenzo R, et al. Persistent psychopathology and neurocognitive impairment in COVID-19 survivors: effect of inflammatory biomarkers at three-month follow-up. Brain Behav Immun. 2021;94:138–147. doi:10.1016/j.bbi.2021.02.021
  • Ganna B, Nils S, Tobias B, et al. Slow but evident recovery from neocortical dysfunction and cognitive impairment in a series of chronic COVID-19 patients. J Nucl Med. 2021;62(7):910. doi:10.2967/jnumed.121.262128
  • Manganotti P, Michelutti M, Furlanis G, Deodato M, Buoite Stella A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin Neurophysiol. 2023;151:83–91. doi:10.1016/j.clinph.2023.04.010
  • Tondo G, Aprile D, De Marchi F, et al. Investigating the prognostic role of peripheral inflammatory markers in mild cognitive impairment. J Clin Med. 2023;12(13):4298. doi:10.3390/jcm12134298
  • Liu X, Bai X, Ren R, et al. Association between depression or anxiety symptoms and immune-inflammatory characteristics in in-patients with tuberculosis: a cross-sectional study. Orig Res Front Psychiatry. 2022;13:1.
  • Shang W, Dong J, Ren Y, et al. The value of clinical parameters in predicting the severity of COVID-19. J Med Virol. 2020;92(10):2188–2192. doi:10.1002/jmv.26031
  • Toori KU, Qureshi MA, Chaudhry A, Safdar MF. Neutrophil to lymphocyte ratio (NLR) in COVID-19: a cheap prognostic marker in a resource constraint setting. Pak J Med Sci. 2021;37(5):1435–1439. doi:10.12669/pjms.37.5.4194
  • Battaglini D, Lopes-Pacheco M, Castro-Faria-Neto HC, Pelosi P, Rocco PRM. Laboratory biomarkers for diagnosis and prognosis in COVID-19. Review. Front Immunol. 2022;13. doi:10.3389/fimmu.2022.857573
  • Alagbe AE, Pedroso GA, de Oliveira BB, et al. Hemograms and serial hemogram-derived ratios in survivors and non-survivors of COVID-19 in Campinas, Brazil. Hematol Transfus Cell Ther. 2022. doi:10.1016/j.htct.2022.11.003
  • Petelina TI, Musikhina NA, Garanina VD, et al. [Characterization of blood biomarkers in prospective follow-up of patients with cardiovascular pathology in combination with type 2 diabetes mellitus after COVID-19 associated pneumonia]. Характеристика биомаркеров крови при проспективном наблюдении пациентов с сердечно-сосудистой патологией в сочетании с сахарным диабетом типа 2, перенесших covid-19 ассоциированную пневмонию. Klin Lab Diagn. 2022;67(10):561–569. Russian. doi:10.51620/0869-2084-2022-67-10-561-569
  • Karaaslan T, Karaaslan E. Predictive value of systemic immune-inflammation index in determining mortality in COVID-19 patients. J Crit Care Med. 2022;8(3):156–164. doi:10.2478/jccm-2022-0013
  • Devita M, Di Rosa E, Iannizzi P, et al. Cognitive and psychological sequelae of COVID-19: age differences in facing the pandemic. Brief research report. Front Psychiatry. 2021;12. doi:10.3389/fpsyt.2021.711461
  • Çırakoğlu ÖF, Yılmaz AS. Systemic immune-inflammation index is associated with increased carotid intima-media thickness in hypertensive patients. Clin Exp Hypertens. 2021;43(6):565–571. doi:10.1080/10641963.2021.1916944
  • Zhang X, Li JH, Zhang Q, et al. Relationship between prognostic nutritional index and mortality in overweight or obese patients with cancer: a multicenter observational study. J Inflamm Res. 2021;14:3921–3932. doi:10.2147/jir.S321724
  • Çakıroğlu Y, Vural F, Vural B. The inflammatory markers in polycystic ovary syndrome: association with obesity and IVF outcomes. J Endocrinol Invest. 2016;39(8):899–907. doi:10.1007/s40618-016-0446-4
  • Y-z N, Z-q Y, Yin H, Shan L-H, Wang J-H, Wu Q-H. Osteosarcopenic obesity and its components—osteoporosis, sarcopenia, and obesity—are associated with blood cell count-derived inflammation indices in older Chinese people. BMC Geriatr. 2022;22(1):532. doi:10.1186/s12877-022-03225-x
  • Nicoară D-M, Munteanu A-I, Scutca A-C, et al. Assessing the relationship between systemic immune-inflammation index and metabolic syndrome in children with obesity. Int J Mol Sci. 2023;24(9):8414. doi:10.3390/ijms24098414
  • Osadnik T, Bujak K, Osadnik K, et al. Novel inflammatory biomarkers may reflect subclinical inflammation in young healthy adults with obesity. Endokrynol Pol. 2019;70(2):135–142. doi:10.5603/EP.a2019.0002
  • Erdal E, Inanir M. Platelet-to-lymphocyte ratio (PLR) and Plateletcrit (PCT) in young patients with morbid obesity. Revista da Associacao Medica Brasileira. 2019;2019:65.
  • J-Y Y, Choi W-J, Lee H-S, Lee J-W. Relationship between inflammatory markers and visceral obesity in obese and overweight Korean adults: an observational study. Medicine. 2019;98:9.
  • Oronsky B, Larson C, Hammond TC, et al. A review of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. 2023;64(1):66–74. doi:10.1007/s12016-021-08848-3
  • Rhie SJ, Jung E-Y, Shim I. The role of neuroinflammation on pathogenesis of affective disorders. J Exerc Rehabil. 2020;16(1):2–9. doi:10.12965/jer.2040016.008
  • Ajčević M, Iscra K, Furlanis G, et al. Cerebral hypoperfusion in post-COVID-19 cognitively impaired subjects revealed by arterial spin labeling MRI. Sci Rep. 2023;13(1):5808. doi:10.1038/s41598-023-32275-3
  • Bhikram T, Sandor P. Neutrophil-lymphocyte ratios as inflammatory biomarkers in psychiatric patients. Brain Behav Immun. 2022;105:237–246. doi:10.1016/j.bbi.2022.07.006