177
Views
0
CrossRef citations to date
0
Altmetric
Clinical Neurology

Retinal Vessel Density and Retinal Nerve Fiber Layer Thickness: A Prospective Study of One-Year Follow-Up of Patients with Parkinson’s Disease

, , , &
Pages 3701-3712 | Received 29 Jun 2023, Accepted 14 Aug 2023, Published online: 22 Aug 2023

References

  • Peng H, Chen S, Wu S, et al. Alpha-synuclein in skin as a high-quality biomarker for Parkinson’s disease. J Neurol Sci. 2023;451:120730. doi:10.1016/j.jns.2023.120730
  • Nicoletti A, Luca A, Baschi R, et al. Vascular risk factors, white matter lesions and cognitive impairment in Parkinson’s disease: the PACOS longitudinal study. J Neurol. 2021;268(2):549–558. doi:10.1007/s00415-020-10189-8
  • Kummer BR, Diaz I, Wu X, et al. Associations between cerebrovascular risk factors and Parkinson disease. Ann Neurol. 2019;86(4):572–581. doi:10.1002/ana.25564
  • Liu Y, Xue L, Zhang Y, Xie A. Association between stroke and Parkinson’s disease: a meta-analysis. J Mol Neurosci. 2020;70(8):1169–1176. doi:10.1007/s12031-020-01524-9
  • Hughes S, Yang H, Chan-Ling T. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis. Invest Ophth Vis Sci. 2000;41:1217–1228.
  • London A, Benhar I, Schwartz M. The retina as a window to the brain-from eye research to CNS disorders. Nat Rev Neurol. 2013;9(1):44–53. doi:10.1038/nrneurol.2012.227
  • Lyu J, Mu X. Genetic control of retinal ganglion cell genesis. Cell Mol Life Sci. 2021;78:4417–4433. RGC的发生. doi:10.1007/s00018-021-03814-w
  • Benhar I, Ding J, Yan W, et al. Temporal single-cell atlas of non-neuronal retinal cells reveals dynamic, coordinated multicellular responses to central nervous system injury. Nat Immunol. 2023;24:700–713. doi:10.1038/s41590-023-01437-w
  • Chalkias I, Tegos T, Topouzis F, Tsolaki M. Ocular biomarkers and their role in the early diagnosis of neurocognitive disorders. Eur J Ophthalmol. 2021;31:2808–2817. doi:10.1177/11206721211016311
  • Garzone D, Finger RP, Mauschitz MM, et al. Visual impairment and retinal and brain neurodegeneration: a population-based study. Hum Brain Mapp. 2023;44:2701–2711. doi:10.1002/hbm.26237
  • Cole ED, Moult EM, Dang S, et al. The definition, rationale, and effects of thresholding in OCT angiography. Ophthalmol Retina. 2017;1:435–447. doi:10.1016/j.oret.2017.01.019
  • Lains I, Wang JC, Cui Y, et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog Retin Eye Res. 2021;84:100951. doi:10.1016/j.preteyeres.2021.100951
  • Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):2649–2653. doi:10.1002/mds.23429
  • Liu J. Diagnostic criteria for Parkinson’s disease in China (2016). Chin J Neurol. 2016;49(4):268–271.
  • Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society-sponsored revision of the unified parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–2170. doi:10.1002/mds.22340
  • Tewarie P, Balk L, Costello F, et al. The OSCAR-IB consensus criteria for retinal OCT quality assessment. PLoS One. 2012;7(4):e34823. doi:10.1371/journal.pone.0034823
  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459–480. doi:10.1016/S1474-4422(18)30499-X
  • Qi S, Yin P, Wang L, et al. Prevalence of Parkinson’s disease: a community‐based study in China. Mov Disord. 2021;36(12):2940–2944. doi:10.1002/mds.28762
  • Normando EM, Davis BM, De Groef L, et al. The retina as an early biomarker of neurodegeneration in a rotenone-induced model of Parkinson’s disease: evidence for a neuroprotective effect of rosiglitazone in the eye and brain. Acta Neuropathol Commun. 2016;4(1):86. doi:10.1186/s40478-016-0346-z
  • Veys L, Vandenabeele M, Ortuño-Lizarán I, et al. Retinal α-synuclein deposits in Parkinson’s disease patients and animal models. Acta Neuropathol. 2019;137(3):379–395. doi:10.1007/s00401-018-01956-z
  • Bodis-Wollner I, Kozlowski PB, Glazman S, Miri S. α-synuclein in the inner retina in Parkinson disease. Ann Neurol. 2014;75(6):964–966. doi:10.1002/ana.24182
  • Guo L, Normando EM, Shah PA, De Groef L, Cordeiro MF. Oculo-visual abnormalities in Parkinson’s disease: possible value as biomarkers. Mov Disord. 2018;33(9):1390–1406. doi:10.1002/mds.27454
  • Xiao RQ, Ying W, Zhenguo L. Circadian rhythm disorder of blood pressure in Parkinson′s disease. Chin J Neurol. 2021;54(12):1307–1311.
  • Huang F, Shu Z, Huang Q, et al. Retinal dopamine D2 receptors participate in the development of myopia in mice. Invest Opthalmol Vis Sci. 2022;63(1):24. doi:10.1167/iovs.63.1.24
  • Marrocco E, Indrieri A, Esposito F, et al. α-synuclein overexpression in the retina leads to vision impairment and degeneration of dopaminergic amacrine cells. Sci Rep. 2020;10(1):9616. doi:10.1038/s41598-020-66497-6
  • Rascunà C, Cicero CE, Chisari CG, et al. Retinal thickness and microvascular pathway in idiopathic rapid eye movement sleep behaviour disorder and Parkinson’s disease. Parkinsonism Relat Disord. 2021;88:40–45. doi:10.1016/j.parkreldis.2021.05.031
  • La Morgia C, Di Vito L, Carelli V, Carbonelli M. Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol. 2017;8:710. doi:10.3389/fneur.2017.00710
  • Huang L, Zhang D, Ji J, Wang Y, Zhang R. Central retina changes in Parkinson’s disease: a systematic review and meta-analysis. J Neurol. 2021;268(12):4646–4654. doi:10.1007/s00415-020-10304-9
  • Sen A, Tugcu B, Coskun C, Ekinci C, Nacaroglu SA. Effects of levodopa on retina in Parkinson disease. Eur J Ophthalmol. 2014;24(1):114–119. doi:10.5301/ejo.5000338
  • Yin Z, Weixia D. Changes of retina I nerve fiber layer thick ness and its correlation with visuaI field mean defects in early Parkinson’s disease. Chin J Ocul Fundus Di. 2010;4:339–342.
  • Kassavetis P, Kaski D, Anderson T, Hallett M. Eye Movement disorders in movement disorders. Mov Disord Clin Pract. 2022;9(3):284–295. doi:10.1002/mdc3.13413
  • Atum M, Demiryürek BE. Retinal morphological changes during the two years of follow-up in Parkinson’s disease. Ideggyogy Sz. 2021;74(1–2):57. doi:10.18071/isz.74.0057
  • Abd Hamid MR, Wan Hitam W, Abd Halim S. Retinal nerve fiber layer and macular thickness in Parkinson’s disease patients. Cureus. 2021;13(7):e16224. doi:10.7759/cureus.16224
  • Hasanov S, Demirkilinc Biler E, Acarer A, Akkın C, Colakoglu Z, Uretmen O. Functional and morphological assessment of ocular structures and follow-up of patients with early-stage Parkinson’s disease. Int Ophthalmol. 2019;39(6):1255–1262. doi:10.1007/s10792-018-0934-y
  • Jiménez B, Ascaso FJ, Cristóbal JA, López Del Val J. Development of a prediction formula of Parkinson disease severity by optical coherence tomography. Mov Disord. 2014;29(1):68–74. doi:10.1002/mds.25747
  • Ma L, Xu L, Mao C, et al. Progressive changes in the retinal structure of patients with Parkinson’s disease. J Parkinsons Dis. 2018;8(1):85–92. doi:10.3233/JPD-171184
  • Satue M, Seral M, Otin S, et al. Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. Br J Ophthalmol. 2014;98(3):350–355. doi:10.1136/bjophthalmol-2013-304152
  • Satue M, Rodrigo MJ, Obis J, et al. Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson’s disease. Invest Ophthalmol Vis Sci. 2017;58(2):1151–1157. doi:10.1167/iovs.16-20460
  • Pierzchlińska A, Kwaśniak-Butowska M, Sławek J, Droździk M, Białecka M. Arterial blood pressure variability and other vascular factors contribution to the cognitive decline in Parkinson’s disease. Molecules. 2021;26(6):1523. doi:10.3390/molecules26061523
  • Zhang X, Xiao H, Liu C, et al. Optical coherence tomography angiography reveals distinct retinal structural and microvascular abnormalities in cerebrovascular disease. Front Neurosci. 2020;14:588515. doi:10.3389/fnins.2020.588515
  • Robbins CB, Thompson AC, Bhullar PK, et al. Characterization of retinal microvascular and choroidal structural changes in Parkinson disease. JAMA Ophthalmol. 2021;139(2):182. doi:10.1001/jamaophthalmol.2020.5730
  • Shi C, Chen Y, Kwapong WR, et al. Characterization by fractal dimension analysis of the retinal capillary network in Parkinson disease. Retina. 2020;40(8):1483–1491. doi:10.1097/IAE.0000000000002641
  • Zhang Y, Zhang D, Gao Y, et al. Retinal flow density changes in early-stage Parkinson’s disease investigated by swept-source optical coherence tomography angiography. Curr Eye Res. 2021;46(12):1886–1891. doi:10.1080/02713683.2021.1933054
  • Kwapong WR, Ye H, Peng C, et al. Retinal microvascular impairment in the early stages of Parkinson’s Disease. Invest Ophthalmol Vis Sci. 2018;59(10):4115–4122. doi:10.1167/iovs.17-23230
  • Zou J, Liu K, Li F, Xu Y, Shen L, Xu H. Combination of optical coherence tomography (OCT) and OCT angiography increases diagnostic efficacy of Parkinson’s disease. Quant Imaging Med Surg. 2020;10(10):1930–1939. doi:10.21037/qims-20-460
  • Deng Y, Jie C, Wang J, Liu Z, Li Y, Hou X. Evaluation of retina and microvascular changes in the patient with Parkinson’s disease: a systematic review and meta-analysis. Front Med. 2022;9:957700. doi:10.3389/fmed.2022.957700
  • Miri S, Shrier EM, Glazman S, et al. The avascular zone and neuronal remodeling of the fovea in Parkinson disease. Ann Clin Transl Neurol. 2015;2(2):196–201. doi:10.1002/acn3.146
  • Elabi O, Gaceb A, Carlsson R, et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci Rep. 2021;11(1):1120.
  • Ouellette J, Lacoste B. From neurodevelopmental to neurodegenerative disorders: the vascular continuum. Front Aging Neurosci. 2021;13:749026.
  • Xue C, Li X, Ba L, et al. MSC-derived exosomes can enhance the angiogenesis of human brain MECs and show therapeutic potential in a mouse model of Parkinson’s disease. Aging Dis. 2021;12(5):1211. doi:10.14336/AD.2020.1221