366
Views
4
CrossRef citations to date
0
Altmetric
General Medicine

The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review

ORCID Icon, , &
Pages 4405-4418 | Received 01 Jul 2023, Accepted 19 Sep 2023, Published online: 27 Sep 2023

References

  • Singh R, Barrios A, Dirakvand G, et al. Human brown adipose tissue and metabolic health: potential for therapeutic avenues. Cells. 2021;10(11):3030. doi:10.3390/cells10113030
  • Alcalá M, Calderon-Dominguez M, Serra D, et al. Mechanisms of impaired brown adipose tissue recruitment in obesity. Front Physiol. 2019;2019:10.
  • Jia W. Obesity, metabolic syndrome and bariatric surgery: a narrative review. J Diabetes Investig. 2019;11(2):294–296. doi:10.1111/jdi.13236
  • Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: trends in obesity rates and obesity‐related complications. Diabetes Obes Metab. 2021;23(S1):3–16. doi:10.1111/dom.14290
  • Tremmel M, Gerdtham U, Nilsson P, et al. Economic burden of obesity: a systematic literature review. Int J Environ Res Public Health. 2017;14(4):435. doi:10.3390/ijerph14040435
  • Bahia L, Schaan CW, Sparrenberger K, et al. Overview of meta-analysis on prevention and treatment of childhood obesity. J Pediatr. 2019;95(4):385–400. doi:10.1016/j.jped.2018.07.009
  • Boden G, Merali S. Measurement of the increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Methods Enzymol. 2011;489:67–82.
  • Ferro-Novick S, Reggiori F, Brodsky JL. ER-Phagy, ER Homeostasis, and ER quality control: implications for disease. Trends Biochem Sci. 2021;46(8):630–639. doi:10.1016/j.tibs.2020.12.013
  • Scherer PE. The many secret lives of adipocytes: implications for diabetes. Diabetologia. 2019;62(2):223–232. doi:10.1007/s00125-018-4777-x
  • Freyre CA, Rauher PC, Ejsing CS, et al. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol Cell. 2019;76(5):811–825. doi:10.1016/j.molcel.2019.09.011
  • Zhao M, Zang B, Cheng M, et al. Differential responses of hepatic endoplasmic reticulum stress and inflammation in diet-induced obese rats with high-fat diet rich in lard oil or soybean oil. PLoS One. 2013;8(11):e78620. doi:10.1371/journal.pone.0078620
  • Veiga FMS, Graus-Nunes F, Rachid TL, et al. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie. 2017;140:106–116. doi:10.1016/j.biochi.2017.07.003
  • Almanza A, Carlesso A, Chintha C, et al. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J. 2019;286(2):241–278. doi:10.1111/febs.14608
  • van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–124. doi:10.1038/nrm2330
  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–529. doi:10.1038/nrm2199
  • Ghemrawi R, Battaglia-Hsu S, Arnold C. Endoplasmic reticulum stress in metabolic disorders. Cells. 2018;7(6):63. doi:10.3390/cells7060063
  • Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J. 2021;289:7163–7176. doi:10.1111/febs.16145
  • Teske BF, Wek SA, Bunpo P, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22(22):4390–4405. doi:10.1091/mbc.e11-06-0510
  • Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009;14(8):996–1007. doi:10.1007/s10495-009-0341-y
  • Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69(2):169–181. doi:10.1016/j.molcel.2017.06.017
  • Tabas I, Kitakaze M. The role of endoplasmic reticulum stress in the progression of atherosclerosis. Circ Res. 2010;107(7):839–850. doi:10.1161/CIRCRESAHA.110.224766
  • Menikdiwela KR, Ramalingam L, Allen L, et al. Angiotensin II increases endoplasmic reticulum stress in adipose tissue and adipocytes. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-44834-8
  • Boden G, Duan X, Homko C, et al. Increase in endoplasmic reticulum stress–related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438–2444. doi:10.2337/db08-0604
  • Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012;18(1):59–68. doi:10.1016/j.molmed.2011.07.010
  • Fu S, Yang L, Li P, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528–531. doi:10.1038/nature09968
  • Zha BS, Zhou H, Zhang K. ER Stress and Lipid Metabolism in Adipocytes. Biochem Res Int. 2012;2012:312943–312949. doi:10.1155/2012/312943
  • Lee S, Min KT. The interface between ER and mitochondria: molecular compositions and functions. Mol Cells. 2018;41(12):1000–1007. doi:10.14348/molcells.2018.0438
  • Han J, Kaufman RJ. Measurement of the unfolded protein response to investigate its role in adipogenesis and obesity. Methods Enzymol. 2014;538:135–150.
  • Yuzefovych LV, Musiyenko SI, Wilson GL, et al. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8(1):e54059. doi:10.1371/journal.pone.0054059
  • Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693–700. doi:10.2337/db08-1220
  • Menikdiwela KR, Torres GJ, Ramalingam L, et al. Mechanisms linking endoplasmic reticulum (ER) stress and microRNAs to adipose tissue dysfunction in obesity. Crit Rev Biochem Mol Biol. 2021;56(5):455–481. doi:10.1080/10409238.2021.1925219
  • Fernandes-Da-Silva A, Miranda CS, Santana-Oliveira DA, et al. Endoplasmic reticulum stress as the basis of obesity and metabolic diseases: focus on adipose tissue, liver, and pancreas. Eur J Nutr. 2021;60(6):2949–2960. doi:10.1007/s00394-021-02542-y
  • Kawasaki N, Asada R, Saito A, et al. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2012;2(1). doi:10.1038/srep00799
  • Suzuki T, Gao J, Ishigaki Y, et al. ER stress protein CHOP mediates insulin resistance by modulating adipose tissue macrophage polarity. Cell Rep. 2017;18(8):2045–2057. doi:10.1016/j.celrep.2017.01.076
  • Alicka M, Marycz K. The effect of chronic inflammation and oxidative and endoplasmic reticulum stress in the course of metabolic syndrome and its therapy. Stem Cells Int. 2018;2018:1–13.36. doi:10.1155/2018/4274361
  • Tchkonia T, Thomou T, Zhu Y, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17(5):644–656. doi:10.1016/j.cmet.2013.03.008
  • Bogdanovic E, Kraus N, Patsouris D, et al. Endoplasmic reticulum stress in adipose tissue augments lipolysis. J Cell Mol Med. 2015;19(1):82–91. doi:10.1111/jcmm.12384
  • Torre Villalvazo I, Bunt AE, Alemán G, et al. Adiponectin synthesis and secretion by subcutaneous adipose tissue is impaired during obesity by endoplasmic reticulum stress. J Cell Biochem. 2018;119(7):5970–5984. doi:10.1002/jcb.26794
  • Poher A, Altirriba J, Veyrat-Durebex C, et al. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4.
  • Yuliana A, Daijo A, Jheng H, et al. Endoplasmic reticulum stress impaired uncoupling protein 1 expression via the suppression of peroxisome proliferator-activated receptorγbinding activity in mice beige adipocytes. Int J Mol Sci. 2019;20(2):274. doi:10.3390/ijms20020274
  • Shan B, Wang X, Wu Y, et al. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity. Nat Immunol. 2017;18(5):519–529. doi:10.1038/ni.3709
  • Wang Y, Cheng Y, Yin X, et al. Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway. Am J Physiol Cell Physiol. 2019;316(2):C223–C234. doi:10.1152/ajpcell.00242.2018
  • Lappas M, Yee K, Permezel M, et al. Sulfasalazine and BAY 11-7082 interfere with the nuclear factor-κB and IκB kinase pathway to regulate the release of proinflammatory cytokines from human adipose tissue and skeletal muscle in vitro. Endocrinology. 2005;146(3):1491–1497. doi:10.1210/en.2004-0809
  • Chen Y, Wu Z, Zhao S, et al. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity. Sci Rep. 2016;6:1.
  • Yin J, Gu L, Wang Y, et al. Rapamycin improves palmitate-induced ER Stress/NFκB pathways associated with stimulating autophagy in adipocytes. Mediators Inflamm. 2015;2015:1–12.
  • Choi HM, Doss HM, Kim KS. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int J Mol Sci. 2020;21(4):1219. doi:10.3390/ijms21041219
  • Shetty S, Kusminski CM, Scherer PE. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci. 2009;30(5):234–239. doi:10.1016/j.tips.2009.02.004
  • Altomonte J, Harbaran S, Richter A, et al. Fat depot-specific expression of adiponectin is impaired in zucker fatty rats. Metabolism. 2003;52(8):958–963. doi:10.1016/S0026-0495(03)00092-1
  • Mondal AK, Das SK, Varma V, et al. Effect of endoplasmic reticulum stress on inflammation and adiponectin regulation in human adipocytes. Metab Syndr Relat Disord. 2012;10(4):297–306. doi:10.1089/met.2012.0002
  • Zhou L, Liu M, Zhang J, et al. DsbA-L Alleviates Endoplasmic Reticulum Stress-Induced Adiponectin Downregulation. Diabetes. 2010;59(11):2809–2816.
  • Sikkeland J, Sheng X, Jin Y, et al. STAMPing at the crossroads of normal physiology and disease states. Mol Cell Endocrinol. 2016;425:26–36. doi:10.1016/j.mce.2016.02.013
  • Wellen KE, Fucho R, Gregor MF, et al. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell. 2007;129(3):537–548. doi:10.1016/j.cell.2007.02.049
  • Moreno-Navarrete JM, Ortega F, Serrano M, et al. DecreasedSTAMP2 expression in association with visceral adipose tissue dysfunction. J Clin Endocrinol Metab. 2011;96(11):E1816–E1825. doi:10.1210/jc.2011-0310
  • Sikkeland J, Lindstad T, Nenseth HZ, et al. Inflammation and ER stress differentially regulate STAMP2 expression and localization in adipocytes. Metabolism. 2019;93:75–85. doi:10.1016/j.metabol.2019.01.014
  • Kim HY, Park SY, Lee MH, et al. Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. J Hepatol. 2015;63(2):477–485. doi:10.1016/j.jhep.2015.01.025
  • Zhou F, Fan X, Miao Y. LPIN1 promotes triglycerides synthesis and is transcriptionally regulated by PPARG in Buffalo mammary epithelial cells. Sci Rep. 2022;12:1.
  • Finck BN, Gropler MC, Chen Z, et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα regulatory pathway. Cell Metab. 2006;4(3):199–210. doi:10.1016/j.cmet.2006.08.005
  • Kim HB, Kumar A, Wang L, et al. Lipin 1 represses NFATc4 transcriptional activity in adipocytes to inhibit secretion of inflammatory factors. Mol Cell Biol. 2010;30(12):3126–3139. doi:10.1128/MCB.01671-09
  • Zhang W, Zhong W, Sun Q, et al. Adipose-specific lipin1 overexpression in mice protects against alcohol-induced liver injury. Sci Rep. 2018;8:1.
  • Miranda M, Escoté X, Ceperuelo-Mallafré V, et al. Relation between human LPIN1, hypoxia and endoplasmic reticulum stress genes in subcutaneous and visceral adipose tissue. Int J Obes. 2010;34(4):679–686. doi:10.1038/ijo.2009.290
  • Tseng Y, Butte AJ, Kokkotou E, et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nat Cell Biol. 2005;7(6):601–611. doi:10.1038/ncb1259
  • Liew CW, Boucher J, Cheong JK, et al. Ablation of TRIP-Br2, a regulator of fat lipolysis, thermogenesis and oxidative metabolism, prevents diet-induced obesity and insulin resistance. Nat Med. 2013;19(2):217–226. doi:10.1038/nm.3056
  • Qiang G, Kong HW, Fang D, et al. The obesity-induced transcriptional regulator TRIP-Br2 mediates visceral fat endoplasmic reticulum stress-induced inflammation. Nat Commun. 2016;7:11378. doi:10.1038/ncomms11378
  • Qiang G, Whang Kong H, Gil V, et al. Transcription regulator TRIP-Br2 mediates ER stress-induced brown adipocytes dysfunction. Sci Rep. 2017;7(1). doi:10.1038/srep40215
  • Nishi-Tatsumi M, Yahagi N, Takeuchi Y, et al. A key role of nuclear factor Y in the refeeding response of fatty acid synthase in adipocytes. FEBS Lett. 2017;591(7):965–978.
  • Lu Y, Dallner OS, Birsoy K, et al. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression. Mol Metab. 2015;4(5):392–405. doi:10.1016/j.molmet.2015.02.002
  • Liu Y, Zhang Y, Zhang Y, et al. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression. Mol Cell Biochem. 2017;426(1–2):47–54.
  • Liu S, Zhou Z, Zhang L, et al. Inhibition of SIRT2 by Targeting GSK3β-mediated phosphorylation alleviates SIRT2 Toxicity in SH-SY5Y cells. Front Cell Neurosci. 2019;13:13. doi:10.3389/fncel.2019.00013
  • Nguyen P, Shukla S, Liu R, et al. Sirt2 regulates radiation-induced injury. Radiat Res. 2019;191(5):398. doi:10.1667/RR15282.1
  • Minten EV, Kapoor-Vazirani P, Li C, et al. SIRT2 promotes BRCA1-BARD1 heterodimerization through deacetylation. Cell Rep. 2021;34(13):108921. doi:10.1016/j.celrep.2021.108921
  • Pereira JM, Chevalier C, Chaze T, et al. Infection reveals a modification of SIRT2 critical for chromatin association. Cell Rep. 2018;23(4):1124–1137. doi:10.1016/j.celrep.2018.03.116
  • Leal H, Cardoso J, Valério P, et al. SIRT2 deficiency exacerbates hepatic steatosis via a putative role of the ER stress pathway. Int J Mol Sci. 2022;23(12):6790. doi:10.3390/ijms23126790
  • Mennigen JA. Micromanaging metabolism—a role for miRNAs in teleost energy metabolism. Comparative biochemistry and physiology part B. Biochem Mol Biol. 2016;199:115–125. doi:10.1016/j.cbpb.2015.09.001
  • Liu L, Li X. Downregulation of miR-320 alleviates endoplasmic reticulum stress and inflammatory response in 3T3-L1 adipocytes. Exp Clin Endocrinol Diabetes. 2021;129(2):131–137. doi:10.1055/a-1012-8420
  • Chen Z, Liu Y, Yang L, et al. MiR-149 attenuates endoplasmic reticulum stress-induced inflammation and apoptosis in nonalcoholic fatty liver disease by negatively targeting ATF6 pathway. Immunol Lett. 2020;222:40–48. doi:10.1016/j.imlet.2020.03.003
  • Barte DP. Metazoan MicroRNAs. Cell. 2018;173(1):20–51.
  • Menikdiwela KR, Ramalingam L, Abbas MM, et al. Role of microRNA 690 in mediating angiotensin II effects on inflammation and endoplasmic reticulum stress. Cells. 2020;9(6):1327. doi:10.3390/cells9061327
  • Fang T, Di Y, Li G, et al. Effects of telmisartan on TNFα induced PPARγ phosphorylation and insulin resistance in adipocytes. Biochem Biophys Res Commun. 2018;503(4):3044–3049. doi:10.1016/j.bbrc.2018.08.091
  • Wu L, Zhang L, Li B, et al. AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front Physiol. 2018;9:9. doi:10.3389/fphys.2018.00009
  • Huang Y, Li Y, Liu Q, et al. Telmisartan attenuates obesity-induced insulin resistance via suppression of AMPK mediated ER stress. Biochem Biophys Res Commun. 2020;523(3):787–794. doi:10.1016/j.bbrc.2019.12.111
  • Ma C, Shi T, Song L, et al. Angiotensin(1–7) attenuates visceral adipose tissue expansion and lipogenesis by suppression of endoplasmic reticulum stress via Mas receptor. Nutr Metab. 2022;19(1). doi:10.1186/s12986-022-00716-x
  • Yang F, Ma Q, Matsabisa MG, et al. Panax notoginseng for cerebral ischemia: a systematic review. Am J Chin Med. 2020;48(06):1331–1351. doi:10.1142/S0192415X20500652
  • Zhang C, Zhang B, Zhang X, et al. Panax notoginseng saponin protects against diabetic cardiomyopathy through lipid metabolism modulation. J Am Heart Assoc. 2022;11(4). doi:10.1161/JAHA.121.023540
  • Tan Y, Zhang X, Zhou Y, et al. Panax notoginseng extract and total saponin suppress diet-induced obesity and endoplasmic reticulum stress in epididymal white adipose tissue in mice. Chin Med. 2022;17(1). doi:10.1186/s13020-022-00629-0
  • Hosseini A, Razavi BM, Banach M, et al. Quercetin and metabolic syndrome: a review. Phytother Res. 2021;35(10):5352–5364. doi:10.1002/ptr.7144
  • Perdicaro DJ, Rodriguez Lanzi C, Gambarte Tudela J, et al. Quercetin attenuates adipose hypertrophy, in part through activation of adipogenesis in rats fed a high-fat diet. J Nutr Biochem. 2020;79:108352. doi:10.1016/j.jnutbio.2020.108352
  • Ardakanian A, Ghasemzadeh RM, Omidkhoda F, et al. Effect of alpha-mangostin on olanzapine-induced metabolic disorders in rats. Iran J Basic Med Sci. 2022;25(2):198–207. doi:10.22038/IJBMS.2022.58734.13047
  • Liu Z, Apontes P, Fomenko E, et al. Mangiferin accelerates glycolysis and enhances mitochondrial bioenergetics. Int J Mol Sci. 2018;19(1):201. doi:10.3390/ijms19010201
  • Zeng Z, Lin C, Wang S, et al. Suppressive activities of mangiferin on human epithelial ovarian cancer. Phytomedicine. 2020;76:153267. doi:10.1016/j.phymed.2020.153267
  • Shen J, Lu R, Cai Q, et al. Mangiferin enhances the antifungal activities of caspofungin by destroying polyamine accumulation. Virulence. 2021;12(1):217–230. doi:10.1080/21505594.2020.1870079
  • Liu T, Song Y, Hu A. Neuroprotective mechanisms of mangiferin in neurodegenerative diseases. Drug Dev Res. 2021;82(4):494–502. doi:10.1002/ddr.21783
  • Xu X, Chen Y, Song J, et al. Mangiferin suppresses endoplasmic reticulum stress in perivascular adipose tissue and prevents insulin resistance in the endothelium. Eur J Nutr. 2018;57(4):1563–1575. doi:10.1007/s00394-017-1441-z
  • Cusi K. The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep. 2010;10(4):306–315. doi:10.1007/s11892-010-0122-6
  • Chen L, Wang T, Chen G, et al. Influence of resveratrol on endoplasmic reticulum stress and expression of adipokines in adipose tissues/adipocytes induced by high-calorie diet or palmitic acid. Endocrine. 2017;55(3):773–785. doi:10.1007/s12020-016-1212-2
  • Alalaiwe A, Fang J, Lee H, et al. The demethoxy derivatives of curcumin exhibit greater differentiation suppression in 3T3-L1 adipocytes than curcumin: a mechanistic study of adipogenesis and molecular docking. Biomolecules. 2021;11(7):1025. doi:10.3390/biom11071025
  • Wang L, Zhang B, Huang F, et al. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance. J Lipid Res. 2016;57(7):1243–1255. doi:10.1194/jlr.M067397
  • Furigo IC, Teixeira PDS, Quaresma PGF, et al. STAT5 ablation in AgRP neurons increases female adiposity and blunts food restriction adaptations. J Mol Endocrinol. 2020;64(1):13–27. doi:10.1530/JME-19-0158
  • Cho Y, Park J, Kang HJ, et al. Ginkgetin, a biflavone from Ginkgo biloba leaves, prevents adipogenesis through STAT5-mediated PPARγ and C/EBPα regulation. Pharmacol Res. 2019;139:325–336. doi:10.1016/j.phrs.2018.11.027
  • Lee J, Yoon S, Lee S, et al. Ginsenoside Rg3 ameliorated HFD-induced hepatic steatosis through downregulation of STAT5-PPARγ. J Endocrinol. 2017;235(3):223–235. doi:10.1530/JOE-17-0233
  • Yao Y. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet‑induced obese mice via endoplasmic reticulum stress and p‑STAT3/STAT3 signaling. Mol Med Rep. 2020;21(3):1059–1070. doi:10.3892/mmr.2020.10935
  • Thomas-Valdés S, Tostes MD, Anunciação PC, et al. Association between vitamin deficiency and metabolic disorders related to obesity. Crit Rev Food Sci Nutr. 2017;57(15):3332–3343. doi:10.1080/10408398.2015.1117413
  • Luo X, Ng C, He J, et al. Vitamin C protects against hypoxia, inflammation, and ER stress in primary human preadipocytes and adipocytes. Mol Cell Endocrinol. 2022;556:111740. doi:10.1016/j.mce.2022.111740
  • Mcardle MA, Finucane OM, Connaughton RM, Mcmorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front Endo. 2013;4:52.
  • Kang SU, Kim HJ, Kim DH, et al. Nonthermal plasma treated solution inhibits adipocyte differentiation and lipogenesis in 3T3-L1 preadipocytes via ER stress signal suppression. Sci Rep. 2018;8:1.
  • Guo Q, Xu L, Liu J, et al. Fibroblast growth factor 21 reverses suppression of adiponectin expression via inhibiting endoplasmic reticulum stress in adipose tissue of obese mice. Exp Biol Med. 2017;242(4):441–447. doi:10.1177/1535370216677354
  • Mcfie PJ, Stone SL, Banman SL, et al. Topological Orientation of Acyl-CoA:Diacylglycerol Acyltransferase-1 (DGAT1) and identification of a putative active site histidine and the role of the N terminus in dimer/tetramer formation. J Biol Chem. 2010;285(48):37377–37387. doi:10.1074/jbc.M110.163691
  • Xu Q, Fan Y, Loor JJ, et al. Effects of diacylglycerol O-acyltransferase 1 (DGAT1) on endoplasmic reticulum stress and inflammatory responses in adipose tissue of ketotic dairy cows. J Dairy Sci. 2022;105(11):9191–9205. doi:10.3168/jds.2022-21989
  • Chitraju C, Mejhert N, Haas JT, et al. Triglyceride Synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 2017;26(2):407–418. doi:10.1016/j.cmet.2017.07.012
  • Xu X, Zhao CX, Wang L, et al. IncreasedCYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes. 2010;59(4):997–1005. doi:10.2337/db09-1241
  • Xu X, Tu L, Feng W, et al. CYP2J3 gene delivery up-regulated adiponectin expression via reduced endoplasmic reticulum stress in adipocytes. Endocrinology. 2013;154(5):1743–1753. doi:10.1210/en.2012-2012