121
Views
0
CrossRef citations to date
0
Altmetric
Nephrology

Identification of Genes Associated with Decreasing Abundance of Monocytes in Long-Term Peritoneal Dialysis Patients

, , , , , , & show all
Pages 5017-5030 | Received 23 Aug 2023, Accepted 19 Oct 2023, Published online: 02 Nov 2023

References

  • Mehrotra R, Devuyst O, Davies SJ, et al. The current state of peritoneal dialysis. J Am Soc Nephrol. 2016;27(11):3238–3252. doi:10.1681/ASN.2016010112
  • Htay H, Johnson DW, Wiggins KJ, et al. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst Rev. 2018;10(10):Cd007554. doi:10.1002/14651858.CD007554.pub3
  • Zhang Z, Jiang N, Ni Z. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis. Front Med. 2017;11(3):349–358. doi:10.1007/s11684-017-0571-2
  • Rumpsfeld M, McDonald SP, Johnson DW. Higher peritoneal transport status is associated with higher mortality and technique failure in the Australian and New Zealand peritoneal dialysis patient populations. J Am Soc Nephrol. 2006;17(1):271–278. doi:10.1681/ASN.2005050566
  • Dounousi E, Duni A, Naka KK, et al. The innate immune system and cardiovascular disease in ESKD: monocytes and natural killer cells. Curr Vasc Pharmacol. 2021;19(1):63–76. doi:10.2174/18756212MTA3yNzEe1
  • Kratofil RM, Kubes P, Deniset JF. Monocyte conversion during inflammation and injury. Arterioscler Thromb Vasc Biol. 2017;37(1):35–42. doi:10.1161/ATVBAHA.116.308198
  • Xiang Y, Ye Y, Zhang Z, et al. Maximizing the utility of cancer transcriptomic data. Trend Cancer. 2018;4(12):823–837. doi:10.1016/j.trecan.2018.09.009
  • Wu J, Fang Z, Liu T, et al. Maximizing the utility of transcriptomics data in inflammatory skin diseases. Front Immunol. 2021;12:761890.
  • Gao S. Data analysis in single-cell transcriptome sequencing. Methods Molecul Biol. 2018;1754:311.
  • Der E, Ranabothu S, Suryawanshi H, et al. Single cell RNA sequencing to dissect the molecular heterogeneity in lupus nephritis. JCI Insight. 2017;2(9). doi:10.1172/jci.insight.93009
  • Wen N, Wu J, Li H, et al. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol. 2023;11(1208566). doi:10.3389/fcell.2023.1208566
  • Parikova A, Hruba P, Krejcik Z, et al. Peritoneal dialysis induces alterations in the transcriptome of peritoneal cells before detectible peritoneal functional changes. Am J Physiol Renal Physiol. 2020;318(1):F229–f237. doi:10.1152/ajprenal.00274.2019
  • Si M, Wang Q, Li Y. Inhibition of hyperglycolysis in mesothelial cells prevents peritoneal fibrosis. Sci Transl Med. 2019;11(495). doi:10.1126/scitranslmed.aav5341
  • Duni A, Vartholomatos G, Balafa O, et al. The association of circulating CD14++CD16+ monocytes, natural killer cells and regulatory T cells subpopulations with phenotypes of cardiovascular disease in a cohort of peritoneal dialysis patients. Front Med. 2021;8(724316). doi:10.3389/fmed.2021.724316
  • Gollapudi P, Yoon JW, Gollapudi S, et al. Leukocyte toll-like receptor expression in end-stage kidney disease. Am J Nephrol. 2010;31(3):247–254. doi:10.1159/000276764
  • Koraishy FM, Bowe B, Xie Y, et al. Monocyte count modifies the association between chronic kidney disease and risk of death. Clin Nephrol. 2018;90(3):194–208. doi:10.5414/CN109434
  • Ni J, Fernandez MA, Danielsson L, et al. Cystatin F is a glycosylated human low molecular weight cysteine proteinase inhibitor. J Biol Chem. 1998;273(38):24797–24804. doi:10.1074/jbc.273.38.24797
  • Galan-Caridad JM, Harel S, Arenzana TL, et al. Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell. 2007;129(2):345–357. doi:10.1016/j.cell.2007.03.014
  • Sur S, Nguyen M, Boada P, et al. FcER1: a novel molecule implicated in the progression of human diabetic kidney disease. Front Immunol. 2021;12(769972). doi:10.3389/fimmu.2021.769972
  • Bass A, Liu Y, Dakshanamurthy S. Single-cell and bulk RNASeq profiling of COVID-19 patients reveal immune and inflammatory mechanisms of infection-induced organ damage. Viruses. 2021;13(12):2418. doi:10.3390/v13122418
  • Nittoli V, Fortunato AE, Fasano G, et al. Characterization of paralogous uncx transcription factor encoding genes in zebrafish. Gene X. 2019;2(100011). doi:10.1016/j.gene.2019.100011
  • Behrens F, Holle J, Kuebler WM, et al. Extracellular vesicles as regulators of kidney function and disease. Intensive Care Med Exp. 2020;8(Suppl 1):22. doi:10.1186/s40635-020-00306-2
  • Yoh K, Ojima M, Takahashi S. Th2-biased GATA-3 transgenic mice developed severe experimental peritoneal fibrosis compared with Th1-biased T-bet and Th17-biased RORγt transgenic mice. Exp Anim. 2015;64(4):353–362. doi:10.1538/expanim.15-0019
  • Flechner SM, Kurian SM, Head SR, et al. Kidney transplant rejection and tissue injury by gene profiling of biopsies and peripheral blood lymphocytes. Am J Transplant. 2004;4(9):1475–1489. doi:10.1111/j.1600-6143.2004.00526.x
  • Sigdel TK, Bestard O, Tran TQ, et al. A computational gene expression score for predicting immune injury in renal allografts. PLoS One. 2015;10(9):e0138133. doi:10.1371/journal.pone.0138133
  • Smyth LJ, Kilner J, Nair V, et al. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. Clin Epigenetics. 2021;13(1):99. doi:10.1186/s13148-021-01081-x
  • Jia L, Jia R, Li Y, Li X, Jia Q, Zhang H. LCK as a potential therapeutic target for acute rejection after kidney transplantation: a bioinformatics clue. J Immunol Res. 2018;2018(6451298):1–9. doi:10.1155/2018/6451298
  • Sigdel T, Nguyen M, Liberto J, et al. Assessment of 19 genes and validation of CRM gene panel for quantitative transcriptional analysis of molecular rejection and inflammation in archival kidney transplant biopsies. Front Med. 2019;6(213). doi:10.3389/fmed.2019.00213
  • Alfaro R, Martínez-Banaclocha H, Llorente S, et al. Computational prediction of biomarkers, pathways, and new target drugs in the pathogenesis of immune-based diseases regarding kidney transplantation rejection. Front Immunol. 2021;12(800968). doi:10.3389/fimmu.2021.800968
  • Villagomez FR, Diaz-Valencia JD, Ovalle-García E, et al. TBC1D10C is a cytoskeletal functional linker that modulates cell spreading and phagocytosis in macrophages. Sci Rep. 2021;11(1):20946. doi:10.1038/s41598-021-00450-z
  • Bade B, Boettcher HE, Lohrmann J, et al. Differential expression of the granzymes A, K and M and perforin in human peripheral blood lymphocytes. Int Immunol. 2005;17(11):1419–1428. doi:10.1093/intimm/dxh320
  • Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, et al. The multifaceted function of granzymes in sepsis: some facts and a lot to discover. Front Immunol. 2020;11:1054. doi:10.3389/fimmu.2020.01054
  • Du C, Mendelson AA, Guan Q, et al. Hyperbranched polyglycerol is superior to glucose for long-term preservation of peritoneal membrane in a rat model of chronic peritoneal dialysis. J Transl Med. 2016;14(1):338. doi:10.1186/s12967-016-1098-z
  • Wegener AM, Letourneur F, Hoeveler A, et al. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell. 1992;68(1):83–95. doi:10.1016/0092-8674(92)90208-T
  • Liu J, Kumar S, Dolzhenko E, et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion. JCI Insight. 2017;2(18). doi:10.1172/jci.insight.94716
  • Luan D, Dadhania DM, Ding R, et al. FOXP3 mRNA profile prognostic of acute T cell-mediated rejection and human kidney allograft survival. Transplantation. 2021;105(8):1825–1839. doi:10.1097/TP.0000000000003478
  • Metkar SS, Menaa C, Pardo J, et al. Human and mouse granzyme A induce a proinflammatory cytokine response. Immunity. 2008;29(5):720–733. doi:10.1016/j.immuni.2008.08.014
  • Joeckel LT, Wallich R, Martin P, et al. Mouse granzyme K has pro-inflammatory potential. Cell Death Differ. 2011;18(7):1112–1119. doi:10.1038/cdd.2011.5
  • Sharma M, Merkulova Y, Raithatha S, et al. Extracellular granzyme K mediates endothelial activation through the cleavage of protease-activated receptor-1. Febs j. 2016;283(9):1734–1747. doi:10.1111/febs.13699
  • Sower LE, Klimpel GR, Hanna W, et al. Extracellular activities of human granzymes. I. Granzyme A induces IL6 and IL8 production in fibroblast and epithelial cell lines. Cell Immunol. 1996;171(1):159–163. doi:10.1006/cimm.1996.0187
  • Campbell RA, Franks Z, Bhatnagar A. Granzyme A in human platelets regulates the synthesis of proinflammatory cytokines by monocytes in aging. J Immunol. 2018;200(1):295–304. doi:10.4049/jimmunol.1700885
  • Rchiad Z, Haidar M, Ansari HR, et al. Novel tumour suppressor roles for GZMA and RASGRP1 in Theileria annulata-transformed macrophages and human B lymphoma cells. Cell Microbiol. 2020;22(12):e13255. doi:10.1111/cmi.13255
  • Dooley BJ, Verma A, Ding R, et al. Urinary cell transcriptome profiling and identification of ITM2A, SLAMF6, and IKZF3 as biomarkers of acute rejection in human kidney allografts. Transplant Direct. 2020;6(8):e588. doi:10.1097/TXD.0000000000001035
  • Yeh YC, Lawal B, Hsiao M, Huang T-H, Huang C-YF. Identification of NSP3 (SH2D3C) as a prognostic biomarker of tumor progression and immune evasion for lung cancer and evaluation of organosulfur compounds from allium sativum L. as therapeutic candidates. Biomedicines. 2021;9(11):1582. doi:10.3390/biomedicines9111582
  • Tagliabue M, Maffini F, Fumagalli C, et al. A role for the immune system in advanced laryngeal cancer. Sci Rep. 2020;10(1):18327. doi:10.1038/s41598-020-73747-0
  • Yang P, Liu L, Sun L, et al. Immunological feature and transcriptional signaling of Ly6C monocyte subsets from transcriptome analysis in control and hyperhomocysteinemic mice. Front Immunol. 2021;12:632333.
  • Park J, Guan Y, Sheng X, et al. Functional methylome analysis of human diabetic kidney disease. JCI Insight. 2019;4(11). doi:10.1172/jci.insight.128886
  • Razzaque MS, Naito T, Taguchi T. Proto-oncogene Ets-1 and the kidney. Nephron. 2001;89(1):1–4. doi:10.1159/000046034
  • Naito T, Razzaque MS, Nazneen A, et al. Renal expression of the Ets-1 proto-oncogene during progression of rat crescentic glomerulonephritis. J Am Soc Nephrol. 2000;11(12):2243–2255. doi:10.1681/ASN.V11122243
  • Witasp A, Luttropp K, Qureshi AR, et al. Longitudinal genome-wide DNA methylation changes in response to kidney failure replacement therapy. Sci Rep. 2022;12(1):470. doi:10.1038/s41598-021-04321-5
  • Juan C, Zhu Y, Chen Y. Knocking down ETS Proto-oncogene 1 (ETS1) alleviates the pyroptosis of renal tubular epithelial cells in patients with acute kidney injury by regulating the NLR family pyrin domain containing 3 (NLRP3) transcription. Bioengineered. 2022;13(5):12927–12940. doi:10.1080/21655979.2022.2079242
  • Zamauskaite A, Yaqoob MM, Madrigal JA, et al. The frequency of Th2 type cells increases with time on peritoneal dialysis in patients with diabetic nephropathy. Eur Cytokine Netw. 1999;10(2):219–226.
  • Marchant V, Tejera-Muñoz A, Marquez-Expósito L. IL-17A as a potential therapeutic target for patients on peritoneal dialysis. Biomolecules. 2020;10(10):1361. doi:10.3390/biom10101361
  • Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43(6):1040–1051. doi:10.1016/j.immuni.2015.12.003
  • Rodrigues-Díez R, Aroeira LS, Orejudo M, et al. IL-17A is a novel player in dialysis-induced peritoneal damage. Kidney Int. 2014;86(2):303–315. doi:10.1038/ki.2014.33
  • Shen J, Zheng J, Saxena R, et al. Novel source of human hematopoietic stem cells from peritoneal dialysis effluents. Stem Cell Res. 2015;15(2):299–304. doi:10.1016/j.scr.2015.07.003