116
Views
0
CrossRef citations to date
0
Altmetric
General Medicine

CYP2C19 *2/*2 Genotype is a Risk Factor for Multi-Site Arteriosclerosis: A Hospital-Based Cohort Study

, , , , &
Pages 5139-5146 | Received 26 Aug 2023, Accepted 31 Oct 2023, Published online: 05 Nov 2023

References

  • Turana Y, Tengkawan J. Hypertension and stroke in Asia: a comprehensive review from HOPE Asia. J Clin Hypertens. 2021;23(3):513–521. doi:10.1111/jch.14099
  • Ji E, Lee S. Antibody-Based Therapeutics for Atherosclerosis and Cardiovascular Diseases. Int J Mol Sci. 2021;22(11):5770. doi:10.3390/ijms22115770
  • Zhang ZZ, Wang G, Yin SH, Yu XH. C1q Tumor Necrosis Factor-Related Protein 1: a Promising Therapeutic Target for Atherosclerosis. J Cardiovasc Pharmacol. 2022;79(3):273–280. doi:10.1097/FJC.0000000000001186
  • Jing L, Shu-Xu D, Yong-Xin R. A review: pathological and molecular biological study on atherosclerosis. Clin Chim Acta. 2022;531:217–222. doi:10.1016/j.cca.2022.04.012
  • Gutierrez J, Turan TN, Hoh BL, Chimowitz MI. Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. 2022;21(4):355–368. doi:10.1016/S1474-4422(21)00376-8
  • Marchio P, Guerra-Ojeda S, Vila JM. Targeting Early Atherosclerosis: a Focus on Oxidative Stress and Inflammation. Oxid Med Cell Longev. 2019;2019:8563845. doi:10.1155/2019/8563845
  • Shamaki GR, Markson F, Soji-Ayoade D, Agwuegbo CC, Bamgbose MO, Tamunoinemi BM. Peripheral Artery Disease: a Comprehensive Updated Review. Curr Probl Cardiol. 2022;47(11):101082. doi:10.1016/j.cpcardiol.2021.101082
  • Park TS, Devi S, Sharma A, Kim GT, Cho KH. De Novo Sphingolipid Biosynthesis in Atherosclerosis. Adv Exp Med Biol. 2022;1372:31–46. doi:10.1007/978-981-19-0394-6_3
  • Aday AW, Matsushita K. Epidemiology of Peripheral Artery Disease and Polyvascular Disease. Circ Res. 2021;128(12):1818–1832. doi:10.1161/CIRCRESAHA.121.318535
  • Gutierrez JA, Aday AW, Patel MR, Jones WS. Polyvascular Disease: reappraisal of the Current Clinical Landscape. Circ Cardiovasc Interv. 2019;12(12):e007385. doi:10.1161/CIRCINTERVENTIONS.119.007385
  • Zhou F, Tang J, Li P, Liao B, Qin C. Distribution of cerebral artery stenosis and risk factors in ethnic Zhuang and Han patients with ischemic stroke in Guangxi province. Ann Palliat Med. 2020;9(2):256–263. doi:10.21037/apm.2020.02.32
  • Lechner K, von Schacky C, McKenzie AL, et al. Lifestyle factors and high-risk atherosclerosis: pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol. 2020;27(4):394–406. doi:10.1177/2047487319869400
  • Abraham G, Rutten-Jacobs L, Inouye M. Risk Prediction Using Polygenic Risk Scores for Prevention of Stroke and Other Cardiovascular Diseases. Stroke. 2021;52(9):2983–2991. doi:10.1161/STROKEAHA.120.032619
  • Li Z, Jiang Y, Guengerich FP. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem. 2020;295(3):833–849. doi:10.1074/jbc.REV119.008758
  • Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev. 2018;19(8):2057–2070. doi:10.22034/APJCP.2018.19.8.2057
  • Lee CR, Luzum JA, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin Pharmacol Ther. 2022;112(5):959–967. doi:10.1002/cpt.2526
  • Fisslthaler B, Fleming I, Busse R. EDHF: a cytochrome P450 metabolite in coronary arteries. Semin Perinatol. 2000;24(1):15–19. doi:10.1016/s0146-0005(00)80048-8
  • Chawengsub Y, Gauthier KM, Campbell WB. Role of arachidonic acid lipoxygenase metabolites in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2009;297(2):H495–507. doi:10.1152/ajpheart.00349.2009
  • Fleming I, Michaelis UR, Bredenkötter D, et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 2001;88(1):44–51. doi:10.1161/01.res.88.1.44
  • Malekmohammad K, Sewell RDE. Antioxidants and Atherosclerosis: mechanistic Aspects. Biomolecules. 2019;9(8):301. doi:10.3390/biom9080301
  • Negre-Salvayre A, Guerby P, Gayral S, Laffargue M, Salvayre R. Role of reactive oxygen species in atherosclerosis: lessons from murine genetic models. Free Radic Biol Med. 2020;149:8–22. doi:10.1016/j.freeradbiomed.2019.10.011
  • Ma L, Yuan Y, Li J, Yu C, Zhao J. Distribution of CYP2C19, ABCB1 and PON1 polymorphisms in Chinese Han, Hui, Uygur and Kazak patients with coronary atherosclerotic heart disease. Int J Immunogenet. 2020;47(6):539–545. doi:10.1111/iji.12511
  • Yang E, Kim S, Kim B, et al. Night-time gastric acid suppression by tegoprazan compared to vonoprazan or esomeprazole. Br J Clin Pharmacol. 2022;88(7):3288–3296. doi:10.1111/bcp.15268
  • Huang S, Yang S, Ly S, et al. Clinical non-effectiveness of clopidogrel use for peripheral artery disease in patients with CYP2C19 polymorphisms: a systematic review. Eur J Clin Pharmacol. 2022;78(8):1217–1225. doi:10.1007/s00228-022-03346-7
  • Jafrin S, Naznin NE, Reza MS, Aziz MA, Islam MS. Risk of stroke in CYP2C19 LoF polymorphism carrier coronary artery disease patients undergoing clopidogrel therapy: an ethnicity-based updated meta-analysis. Eur J Intern Med. 2021;90:49–65. doi:10.1016/j.ejim.2021.05.022
  • Wang T, Zhao T, Bao S, et al. CYP2C19, PON1, and ABCB1 gene polymorphisms in Han and Uygur populations with coronary artery disease in Northwestern Xinjiang, China, From 2014 Through 2019. Medicine. 2020;99(29):e20582. doi:10.1097/MD.0000000000020582
  • Yang YN, Wang XL, Ma YT, et al. Association of interaction between smoking and CYP 2C19*3 polymorphism with coronary artery disease in a Uighur population. Clin Appl Thromb Hemost. 2010;16(5):579–583. doi:10.1177/1076029610364522
  • Hokimoto S, Tabata N, Akasaka T, et al. Gender differences in impact of CYP2C19 polymorphism on development of coronary artery disease. J Cardiovasc Pharmacol. 2015;65(2):148–152. doi:10.1097/FJC.0000000000000171
  • Patel PD, Vimalathas P, Niu X, et al. CYP2C19 Loss-of-Function is Associated with Increased Risk of Ischemic Stroke after Transient Ischemic Attack in Intracranial Atherosclerotic Disease. J Stroke Cerebrovasc Dis. 2021;30(2):105464. doi:10.1016/j.jstrokecerebrovasdis.2020.105464
  • Kubota M, Yoneda M, Watanabe H, Egusa G. Progression of Carotid Atherosclerosis in Two Japanese Populations with Different Lifestyles. J Atheroscler Thromb. 2017;24(10):1069–1074. doi:10.5551/jat.39578
  • Liu Y, Wang X, Zhang Q, et al. Relationship Between Dietary Patterns and Carotid Atherosclerosis Among People Aged 50 Years or Older: a Population-Based Study in China. Front Nutr. 2021;8:723726. doi:10.3389/fnut.2021.723726
  • Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc Dis. 2012;34(4):290–296. doi:10.1159/000343145
  • Qiao Y, Guallar E, Suri FK, et al. MR Imaging Measures of Intracranial Atherosclerosis in a Population-based Study. Radiology. 2016;280(3):860–868. doi:10.1148/radiol.2016151124
  • Wu FZ, Wu MT. 2014 SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2015;9(2):e3. doi:10.1016/j.jcct.2015.01.003
  • Wang Z, Chen Z, Zhang L, et al. Status of Hypertension in China: results From the China Hypertension Survey, 2012-2015. Circulation. 2018;137(22):2344–2356. doi:10.1161/CIRCULATIONAHA.117.032380
  • Wang L, Gao P, Zhang M, et al. Prevalence and Ethnic Pattern of Diabetes and Prediabetes in China in 2013. JAMA. 2017;317(24):2515–2523. doi:10.1001/jama.2017.7596
  • Cai N, Li C, Gu X, et al. CYP2C19 loss-of-function is associated with increased risk of hypertension in a Hakka population: a case-control study. BMC Cardiovasc Disord. 2023;23(1):185. doi:10.1186/s12872-023-03207-w
  • Reynald RL, Sansen S, Stout CD, Johnson EF. Structural characterization of human cytochrome P450 2C19: active site differences between P450s 2C8, 2C9, and 2C19. J Biol Chem. 2012;287(53):44581–44591. doi:10.1074/jbc.M112.424895
  • He L, Chen S, Li J, et al. Genetic and phenotypic frequency distribution of CYP2C9, CYP2C19 and CYP2D6 in over 3200 Han Chinese. Clin Exp Pharmacol Physiol. 2020;47(10):1659–1663. doi:10.1111/1440-1681.13357
  • Lee YC, Liao YC, Chang FC, Huang HC, Tsai JY, Chung CP. Investigating CYP2C19 loss-of-function allele statuses and their association with stroke of different etiologies in a Taiwanese population. J Chin Med Assoc. 2019;82(6):469–472. doi:10.1097/JCMA.0000000000000101
  • Vu NP, Nguyen HTT, Tran NTB, et al. CYP2C19 genetic polymorphism in the Vietnamese population. Ann Hum Biol. 2019;46(6):491–497. doi:10.1080/03014460.2019.1687750
  • Sukprasong R, Chuwongwattana S, Koomdee N, et al. Allele frequencies of single nucleotide polymorphisms of clinically important drug-metabolizing enzymes CYP2C9, CYP2C19, and CYP3A4 in a Thai population. Sci Rep. 2021;11(1):12343. doi:10.1038/s41598-021-90969-y
  • Vidović S, Škrbić R, Stojiljković MP, et al. Prevalence of five pharmacologically most important CYP2C9 and CYP2C19 allelic variants in the population from the Republic of Srpska in Bosnia and Herzegovina. Arh Hig Rada Toksikol. 2021;72(3):129–134. doi:10.2478/aiht-2021-72-3499
  • Arvanitidis K, Ragia G, Iordanidou M, et al. Genetic polymorphisms of drug-metabolizing enzymes CYP2D6, CYP2C9, CYP2C19 and CYP3A5 in the Greek population. Fundam Clin Pharmacol. 2007;21(4):419–426. doi:10.1111/j.1472-8206.2007.00510.x
  • Myrand SP, Sekiguchi K, Man MZ, et al. Pharmacokinetics/genotype associations for major cytochrome P450 enzymes in native and first- and third-generation Japanese populations: comparison with Korean, Chinese, and Caucasian populations. Clin Pharmacol Ther. 2008;84(3):347–361. doi:10.1038/sj.clpt.6100482
  • Afilal D, Basselam MA, Brakez Z, Chouham S, Brehm A, Izaabel EH. Genetic Polymorphism of Drug-Metabolizing Enzymes CYP2C9 and CYP2C19 in Moroccan Population. Genet Test Mol Biomarkers. 2017;21(5):298–304. doi:10.1089/gtmb.2016.0304
  • Kudzi W, Dodoo AN, Mills JJ. Characterisation of CYP2C8, CYP2C9 and CYP2C19 polymorphisms in a Ghanaian population. BMC Med Genet. 2009;10:124. doi:10.1186/1471-2350-10-124
  • Khalil BM, Shahin MH, Solayman MH, et al. Genetic and Nongenetic Factors Affecting Clopidogrel Response in the Egyptian Population. Clin Transl Sci. 2016;9(1):23–28. doi:10.1111/cts.12383
  • Saber MM, Boroumand M, Behmanesh M. Investigation of CYP2C19 allele and genotype frequencies in Iranian population using experimental and computational approaches. Thromb Res. 2014;133(2):272–275. doi:10.1016/j.thromres.2013.11.005
  • Djaffar Jureidini I, Chamseddine N, Keleshian S, Naoufal R, Zahed L, Hakime N. Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep. 2011;38(8):5449–5452. doi:10.1007/s11033-011-0700-y
  • Bravo-Villalta HV, Yamamoto K, Nakamura K, Bayá A, Okada Y, Horiuchi R. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population: an investigative and comparative study. Eur J Clin Pharmacol. 2005;61(3):179–184. doi:10.1007/s00228-004-0890-5
  • de Andrés F, Altamirano-Tinoco C, Ramírez-Roa R, Montes-Mondragón CF, Dorado P. Relationships between CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4 metabolic phenotypes and genotypes in a Nicaraguan Mestizo population. Pharmacogenomics J. 2021;21(2):140–151. doi:10.1038/s41397-020-00190-9
  • Pastore I, Bolla AM, Montefusco L, et al. The Impact of Diabetes Mellitus on Cardiovascular Risk Onset in Children and Adolescents. Int J Mol Sci. 2020;21(14):4928. doi:10.3390/ijms21144928
  • Pabon M, Cheng S. Sex Differences in Peripheral Artery Disease. Circ Res. 2022;130(4):496–511. doi:10.1161/CIRCRESAHA.121.320702