148
Views
0
CrossRef citations to date
0
Altmetric
Infectious Diseases

Comparison of Salivary Secretion, pH, and Buffer Capacity Between COVID-19 Vaccinated and Unvaccinated Child Patients Visiting Dental Clinics of University Hospitals in Riyadh City, Saudi Arabia

, ORCID Icon, &
Pages 6115-6125 | Received 18 Sep 2023, Accepted 19 Dec 2023, Published online: 25 Dec 2023

References

  • European Centre for Disease Prevention and Control. Note from the editors: world health organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Euro Surveill. 2020;25:5.
  • Ladhani SN, Amin-Chowdhury Z, Davies HG, et al. COVID-19 in children: analysis of the first pandemic peak in England. Arch Dis Child. 2020;105(12):1180–1185. doi:10.1136/archdischild-2020-320042
  • Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of their close contacts in Shenzhen, China: a retrospective cohort study. Lancet Infect Dis. 2020;20(8):911–919. doi:10.1016/S1473-3099(20)30287-5
  • Stockman LJ, Massoudi MS, Helfand R, et al. Severe acute respiratory syndrome in children. Pediatr Infect Dis J. 2007;26(1):68–74. doi:10.1097/01.inf.0000247136.28950.41
  • Alharbi M, Kazzaz YM, Hameed T, et al. SARS-CoV-2 infection in children, clinical characteristics, diagnostic findings and therapeutic interventions at a tertiary care center in Riyadh, Saudi Arabia. J Infect Public Health. 2021;14(4):446–453. doi:10.1016/j.jiph.2020.12.034
  • Leung Wai C, Kwan Wah Y, Ko Wan P, et al. Severe acute respiratory syndrome among children. Pediatrics. 2004;113(6):e535–543. doi:10.1542/peds.113.6.e535
  • World Health Organization. COVID-19 disease in children and adolescents: scientific brief; 2021. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci_Brief-Children_and_adolescents-2021.1.
  • Li F, Li YY, Liu MJ, et al. Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study. Lancet Infect Dis. 2021;21(5):617–628. doi:10.1016/S1473-3099(20)30981-6
  • DeBiasi RL, Delaney M. Symptomatic and asymptomatic viral shedding in pediatric patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): under the surface. JAMA Pediatr. 2021;175(1):16–18. doi:10.1001/jamapediatrics.2020.3996
  • Han MS, Choi EH, Chang SH, et al. Clinical characteristics and viral RNA detection in children with coronavirus disease 2019 in the Republic of Korea. JAMA Pediatr. 2021;175(1):73–80. doi:10.1001/jamapediatrics.2020.3988
  • Liu Q, Qin C, Liu M, Liu J. Effectiveness and safety of SARS-CoV-2 vaccine in real-world studies: a systematic review and meta-analysis. Infect Dis Poverty. 2021;10(1):132. doi:10.1186/s40249-021-00915-3
  • AAPD. COVID-19 Update/Coronavirus Update. Available from: https://www.aapd.org/about/about-aapd/news-room/covid-19/. Accessed December 20, 2023.
  • Ministry of Health . MOH and SDAIA Release ‘COVID-19 Immunity Passport’ Through ‘Tawakkalna’ Application;2021. Available from: https://www.moh.gov.sa/en/Ministry/MediaCenter/News/Pages/News-2021-01-07-004.aspx.
  • Ali K, Berman G, Zhou H, et al. Evaluation of mRNA-1273 SARS-CoV-2 Vaccine in Adolescents. N Engl J Med. 2021;385(24):2241–2251. doi:10.1056/NEJMoa2109522
  • Frenck RW, Klein NP, Kitchin N, et al. Safety, Immunogenicity, and Efficacy of the BNT162b2 Covid-19 Vaccine in Adolescents. N Engl J Med. 2021;385(3):239–250. doi:10.1056/NEJMoa2107456
  • Godinho V. Covid-19: over 90% of students aged 12 and over in Saudi Arabia are vaccinated; 2021. Available from: https://gulfbusiness.com/covid$-$19--over$-$90--of--students--aged$-$12--and--over--in--saudi--arabia--are--vaccinated/. Accessed June 23, 2022.
  • Walter EB, Talaat KR, Sabharwal C, et al. Evaluation of the BNT162b2 covid-19 vaccine in children 5 to 11 years of age. N Engl J Med. 2022;386(1):35–46. doi:10.1056/NEJMoa2116298
  • Saudi Press Agency. SFDA approves using pfizer vaccine to age category 5–11 the official Saudi press agency; 2021. Available from: https://www.spa.gov.sa/viewfullstory.php?lang=en&newsid=2301189. Accessed June 23, 2022.
  • Liu L, Wei Q, Alvarez X, et al. Epithelial cells lining salivary gland ducts are early target cells of severe acute respiratory syndrome coronavirus infection in the upper respiratory tracts of rhesus macaques. J Virol. 2011;85(8):4025–4030. doi:10.1128/JVI.02292-10
  • Amorim Dos Santos J, Normando AGC, Carvalho da Silva RL, et al. Oral manifestations in patients with COVID-19: a 6-month update. J Dent Res. 2021;100(12):1321–1329. doi:10.1177/00220345211029637
  • Lim ZY, Ang AXY, Cross GB. COVID-19 associated parotitis. IDCases. 2021;24:e01122.
  • Adam TR, Al-Sharif AI, Tonouhewa A, AlKheraif AA. Prevalence of caries among school children in Saudi Arabia: a meta-analysis. Adv Prev Med. 2022;2022:7132681. doi:10.1155/2022/7132681
  • Dawes C, Wong DTW. Role of saliva and salivary diagnostics in the advancement of oral health. J Dent Res. 2019;98(2):133–141. doi:10.1177/0022034518816961
  • Kubala E, Strzelecka P, Grzegocka M, et al. A review of selected studies that determine the physical and chemical properties of saliva in the field of dental treatment. BioMed Res Int. 2018;2018:6572381. doi:10.1155/2018/6572381
  • Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review. F1000Research. 2020;9:1.
  • Kim JH, Kim MA, Chae YK, Nam OH. Salivary characteristics, individual casual parameters, and their relationships with the significant caries index among Korean children aged 12 years. Int J Environ Res Public Health. 2021;18(6):3118. doi:10.3390/ijerph18063118
  • Alkhateeb AA, Mancl LA, Presland RB, Rothen ML, Chi DL. Unstimulated saliva-related caries risk factors in individuals with cystic fibrosis: a cross-sectional analysis of unstimulated salivary flow, pH, and buffering capacity. Caries Res. 2017;51(1):1–6. doi:10.1159/000450658
  • Riad A, Põld A, Kateeb E, Attia S. Oral adverse events following COVID-19 vaccination: analysis of VAERS reports. Front Public Health. 2022;10:952781. doi:10.3389/fpubh.2022.952781
  • Moritsuka M, Kitasako Y, Burrow MF, Ikeda M, Tagami J. The pH change after HCl titration into resting and stimulated saliva for a buffering capacity test. Aust Dent J. 2006;51(2):170–174. doi:10.1111/j.1834-7819.2006.tb00422.x
  • Touger-Decker R, van Loveren C. Sugars and dental caries. Am J Clin Nutr. 2003;78(4):881S–892S. doi:10.1093/ajcn/78.4.881S
  • Cunha-Cruz J, Scott J, Rothen M, et al. Salivary characteristics and dental caries: evidence from general dental practices. J Am Dent Assoc 1939. 2013;144(5):e31–40. doi:10.14219/jada.archive.2013.0159
  • Laine MA, Tolvanen M, Pienihäkkinen K, et al. The effect of dietary intervention on paraffin-stimulated saliva and dental health of children participating in a randomized controlled trial. Arch Oral Biol. 2014;59(2):217–225. doi:10.1016/j.archoralbio.2013.11.013
  • Heintze U, Birkhed D, Björn H. Secretion rate and buffer effect of resting and stimulated whole saliva as a function of age and sex. Swed Dent J. 1983;7(6):227–238.
  • Alvariño C, Bagan L, Murillo-Cortes J, Calvo J, Bagan J. Stimulated whole salivary flow rate: the most appropriate technique for assessing salivary flow in Sjögren syndrome. Med Oral Patol Oral Cir Bucal. 2021;26(3):e404–e407. doi:10.4317/medoral.24736
  • Dawes C. Salivary flow patterns and the health of hard and soft oral tissues. J Am Dent Assoc. 2008;139:18S–24S. doi:10.14219/jada.archive.2008.0351
  • Samnieng P, Ueno M, Shinada K, Zaitsu T, Wright FC, Kawaguchi Y. Association of hyposalivation with oral function, nutrition and oral health in community-dwelling elderly Thai. Community Dent Health. 2012;29(1):117–123.
  • Crossner CG. Salivary flow rate in children and adolescents. Swed Dent J. 1984;8(6):271–276.
  • Sánchez-Pérez L, Irigoyen-Camacho E, Sáenz-Martínez L, Zepeda Zepeda M, Acosta-Gío E, Méndez-Ramírez I. Stability of unstimulated and stimulated whole saliva flow rates in children. Int J Paediatr Dent. 2016;26(5):346–350. doi:10.1111/ipd.12206
  • Riad A, Pokorná A, Attia S, Klugarová J, Koščík M, Klugar M. Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic. J Clin Med. 2021;10(7):1428. doi:10.3390/jcm10071428
  • Riad A, Hocková B, Kantorová L, et al. Side Effects of mRNA-Based COVID-19 Vaccine: nationwide Phase IV study among healthcare workers in Slovakia. Pharmaceuticals. 2021;14(9):873. doi:10.3390/ph14090873
  • Lapić I, Šegulja D, Rogić D. Assessment of salivary antibody response to BNT162b2 mRNA COVID‐19 vaccination. J Med Virol. 2021;93(9):5257–5259. doi:10.1002/jmv.27096
  • Azzi L, Dalla Gasperina D, Veronesi G, et al. Mucosal immune response in BNT162b2 COVID-19 vaccine recipients. EBioMedicine. 2022;75:103788. doi:10.1016/j.ebiom.2021.103788
  • Alghamdi M, Ingle NA, Baseer MA, Alghamdi M, Ingle NA, Baseer MA. Assessment of Salivary pH, buffer capacity, and flow in COVID-19-infected and vaccinated dental patients. Cureus. 2023;15:5.
  • Baliga S, Muglikar S, Kale R. Salivary pH: a diagnostic biomarker. J Indian Soc Periodontol. 2013;17(4):461–465. doi:10.4103/0972-124X.118317
  • Varga G. Physiology of the salivary glands. Surg Oxf. 2012;30(11):578–583.
  • Bardow A, Moe D, Nyvad B, Nauntofte B. The buffer capacity and buffer systems of human whole saliva measured without loss of CO2. Arch Oral Biol. 2000;45(1):1–12. doi:10.1016/S0003-9969(99)00119-3
  • Prodan A, Brand HS, Ligtenberg AJM, et al. Interindividual variation, correlations, and sex-related differences in the salivary biochemistry of young healthy adults. Eur J Oral Sci. 2015;123(3):149–157. doi:10.1111/eos.12182
  • Björnstad L, Crossner CG. Stimulated salivary flow rate and buffer effect in schoolchildren from Greenland and Sweden: a comparative study. Acta Odontol Scand. 2007;65(3):162–166. doi:10.1080/00016350601187132
  • Inoue H, Ono K, Masuda W, et al. Gender difference in unstimulated whole saliva flow rate and salivary gland sizes. Arch Oral Biol. 2006;51(12):1055–1060. doi:10.1016/j.archoralbio.2006.06.010