130
Views
1
CrossRef citations to date
0
Altmetric
Oncology

Relationship Between MUC4 Variants and Metastatic Recurrence in Colorectal Cancer

, , &
Pages 5077-5087 | Received 07 Sep 2023, Accepted 20 Oct 2023, Published online: 02 Nov 2023

References

  • Yue X, Pengfei X. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10):101174. doi:10.1016/j.tranon.2021.101174
  • Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–732. doi:10.1038/s41575-019-0189-8
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Andrianifahanana M, Moniaux N, Batra SK. Regulation of mucin expression: mechanistic aspects and implications for cancer and inflammatory diseases. Biochim Biophys Acta. 2006;1765(2):189–222. doi:10.1016/j.bbcan.2006.01.002
  • Zeljkovic A, Vekic J, Mihajlovic M, et al. Revealing the Role of High-Density Lipoprotein in Colorectal Cancer. Int J Mol Sci. 2021;22(7):3352. doi:10.3390/ijms22073352
  • Kaur S, Kumar S, Momi N, et al. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol. 2013;10(10):607–620. doi:10.1038/nrgastro.2013.120
  • Pai P, Rachagani S, Dhawan P, et al. MUC4 is negatively regulated through the Wnt/beta-catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes Cancer. 2016;7(5–6):154–168. doi:10.18632/genesandcancer.108
  • Almasmoum H. The Roles of Transmembrane Mucins Located on Chromosome 7q22.1 in Colorectal Cancer. Cancer Manag Res. 2021;13:3271–3280. doi:10.2147/CMAR.S299089
  • Mukhopadhyay P, Lakshmanan I, Ponnusamy MP, et al. MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One. 2013;8(2):e54455. doi:10.1371/journal.pone.0054455
  • Zhi X, Tao J, Xie K, et al. MUC4-induced nuclear translocation of beta-catenin: a novel mechanism for growth, metastasis and angiogenesis in pancreatic cancer. Cancer Lett. 2014;346(1):104–113. doi:10.1016/j.canlet.2013.12.021
  • Hu C, Shu L, Chen C, et al. A prediction model integrated genomic alterations and immune signatures of tumor immune microenvironment for early recurrence of stage I NSCLC after curative resection. Translational Lung Cancer Res. 2022;11(1):24–42. doi:10.21037/tlcr-21-751
  • Shanmugam C, Jhala NC, Katkoori VR, et al. Prognostic value of mucin 4 expression in colorectal adenocarcinomas. Cancer. 2010;116(15):3577–3586. doi:10.1002/cncr.25095
  • Biemer-Hüttmann AE, Walsh MD, McGuckin MA, et al. Immunohistochemical staining patterns of MUC1, MUC2, MUC4, and MUC5AC mucins in hyperplastic polyps, serrated adenomas, and traditional adenomas of the colorectum. J Histochem Cytochem. 1999;47(8):1039–1048. doi:10.1177/002215549904700808
  • Kahlenberg MS, Sullivan JM, Witmer DD, et al. Molecular prognostics in colorectal cancer. Surg Oncol. 2003;12(3):173–186. doi:10.1016/S0960-7404(03)00006-9
  • Ergun Y, Bal O, Dogan M, et al. Does primary tumor resection contribute to overall survival in unresectable synchronous metastatic colorectal cancer? J Res Med Sci. 2020;25:14. doi:10.4103/jrms.JRMS_1056_18
  • Chandra R, Karalis JD, Liu C, et al. The Colorectal Cancer Tumor Microenvironment and Its Impact on Liver and Lung Metastasis. Cancers. 2021;13(24):6206. doi:10.3390/cancers13246206
  • Riihimäki M, Hemminki A, Sundquist J, et al. Patterns of metastasis in colon and rectal cancer. Sci Rep. 2016;6:29765. doi:10.1038/srep29765
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262
  • Ceelen W, Ramsay RG, Narasimhan V, et al. Targeting the Tumor Microenvironment in Colorectal Peritoneal Metastases. Trends Cancer. 2020;6(3):236–246. doi:10.1016/j.trecan.2019.12.008
  • Franko J. Therapeutic efficacy of systemic therapy for colorectal peritoneal carcinomatosis: surgeon’s perspective. Pleura peritoneum. 2018;3(1):20180102. doi:10.1515/pp-2018-0102
  • Lu S, Catalano C, Huhn S, et al. Single nucleotide polymorphisms within MUC4 are associated with colorectal cancer survival. PLoS One. 2019;14(5):e0216666. doi:10.1371/journal.pone.0216666
  • Shinji S, Yamada T, Matsuda A, et al. Recent Advances in the Treatment of Colorectal Cancer: a Review. J Nippon Med School. 2022;89(3):246–254. doi:10.1272/jnms.JNMS.2022_89-310
  • van der Stok EP, Spaander MCW, Grünhagen DJ, et al. Surveillance after curative treatment for colorectal cancer. Nat Rev Clin Oncol. 2017;14(5):297–315. doi:10.1038/nrclinonc.2016.199
  • Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216(5):1016–1026. doi:10.1084/jem.20181827
  • Miyake H, Kawai K, Nozawa H, et al. Less intensive surveillance after radical surgery for stage I-III colorectal cancer by focusing on the doubling time of recurrence. Surg Today. 2021;51(4):550–560. doi:10.1007/s00595-020-02135-y
  • Mo S, Ye L, Wang D, et al. Early Detection of Molecular Residual Disease and Risk Stratification for Stage I to III Colorectal Cancer via Circulating Tumor DNA Methylation. JAMA oncol. 2023;9(6):770–778. doi:10.1001/jamaoncol.2023.0425
  • Chen G, Peng J, Xiao Q, et al. Postoperative circulating tumor DNA as markers of recurrence risk in stages II to III colorectal cancer. J Hematol Oncol. 2021;14(1):80. doi:10.1186/s13045-021-01089-z
  • Turgunov Y, Ogizbayeva A, Shakeyev K, et al. The dynamics of the lipopolysaccharide-binding protein (LBP) level in assessing the risk of adverse outcomes in operated colorectal cancer patients. Asian J Surg;2023. S1015-9584(23)01268–X. doi:10.1016/j.asjsur.2023.08.101
  • Qaderi SM, Galjart B, Verhoef C, et al. Disease recurrence after colorectal cancer surgery in the modern era: a population-based study. Int J Colorectal Dis. 2021;36(11):2399–2410. doi:10.1007/s00384-021-03914-w
  • Yamano T, Yamauchi S, Tsukamoto K, et al. Evaluation of appropriate follow-up after curative surgery for patients with colorectal cancer using time to recurrence and survival after recurrence: a retrospective multicenter study. Oncotarget. 2018;9(39):25474–25490. doi:10.18632/oncotarget.25312
  • Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev. 2004;23:77–99. doi:10.1023/A:1025815113599
  • Mizejewski GJ. The adenocarcinoma cell surface mucin receptor for alpha-fetoprotein: is the same receptor present on circulating monocytes and macrophages? A commentary. Tumour Biol. 2014;35(8):7397–7402. doi:10.1007/s13277-014-2183-7
  • Ganguly K, Rauth S, Marimuthu S, et al. Unraveling mucin domains in cancer and metastasis: when protectors become predators. Cancer Metastasis Rev. 2020;39(3):647–659. doi:10.1007/s10555-020-09896-5
  • Dhanisha SS, Guruvayoorappan C. Pathological Implications of Mucin Signaling in Metastasis. Curr Cancer Drug Targets. 2023;23(8):585–602. doi:10.2174/1568009623666230320121332
  • Hwang I, Kang YN, Kim JY, et al. Prognostic significance of membrane-associated mucins 1 and 4 in gastric adenocarcinoma. Exp Ther Med. 2012;4(2):311–316. doi:10.3892/etm.2012.598
  • Chaturvedi P, Singh AP, Moniaux N, et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res. 2007;5(4):309–320. doi:10.1158/1541-7786.MCR-06-0353
  • Lan YT, Chang SC, Lin PC, et al. Clinicopathological and Molecular Features of Patients with Early and Late Recurrence after Curative Surgery for Colorectal Cancer. Cancers. 2021;13(8). doi:10.3390/cancers13081883
  • Kwon MJ, Lee JY, Kim EJ, et al. Genetic variants of MUC4 are associated with susceptibility to and mortality of colorectal cancer and exhibit synergistic effects with LDL-C levels. PLoS One. 2023;18(6):e0287768. doi:10.1371/journal.pone.0287768
  • Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88(2):358–363. doi:10.1002/(SICI)1097-0142(20000115)88:2<358::AID-CNCR16>3.0.CO;2-O
  • Schneider MA, Eden J, Pache B, et al. Mutations of RAS/RAF Proto-oncogenes Impair Survival After Cytoreductive Surgery and HIPEC for Peritoneal Metastasis of Colorectal Origin. Ann Surg. 2018;268(5):845–853. doi:10.1097/SLA.0000000000002899
  • Roth L, Russo L, Ulugoel S, et al. Peritoneal Metastasis: current Status and Treatment Options. Cancers. 2021;14(1):60. doi:10.3390/cancers14010060
  • Loh CY, Chai JY, Tang TF, et al. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: signaling, Therapeutic Implications, and Challenges. Cells. 2019;8(10):1118. doi:10.3390/cells8101118
  • Conacci-Sorrell M, Simcha I, Ben-Yedidia T, et al. Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 2003;163(4):847–857. doi:10.1083/jcb.200308162
  • Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle. 2013;12(20):3272–3285. doi:10.4161/cc.26385
  • Chaturvedi P, Singh AP, Chakraborty S, et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 2008;68(7):2065–2070. doi:10.1158/0008-5472.CAN-07-6041
  • Zhang P, Cao X, Guan M, et al. CPNE8 Promotes Gastric Cancer Metastasis by Modulating Focal Adhesion Pathway and Tumor Microenvironment. Int J Biol Sci. 2022;18(13):4932–4949. doi:10.7150/ijbs.76425
  • Liu L, Wu N, Wang Y, et al. TRPM7 promotes the epithelial-mesenchymal transition in ovarian cancer through the calcium-related PI3K / AKT oncogenic signaling. J Exp Clin Cancer Res. 2019;38(1):106. doi:10.1186/s13046-019-1061-y
  • Shen L, Zhang J, Xu M, et al. DDX3 acts as a tumor suppressor in colorectal cancer as loss of DDX3 in advanced cancer promotes tumor progression by activating the MAPK pathway. Int J Biol Sci. 2022;18(10):3918–3933. doi:10.7150/ijbs.73491
  • Zhang M, Liu S, Chua MS, et al. SOCS5 inhibition induces autophagy to impair metastasis in hepatocellular carcinoma cells via the PI3K/Akt/mTOR pathway. Cell Death Dis. 2019;10(8):612. doi:10.1038/s41419-019-1856-y
  • Liao H, Zhang L, Lu S, et al. viaKIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer PI3K/AKT/mTOR Signaling Pathway. Front Genet. 2022;13:848926. doi:10.3389/fgene.2022.848926
  • Jonckheere N, Skrypek N, Merlin J, et al. The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS One. 2012;7(2):e32232. doi:10.1371/journal.pone.0032232
  • Rowson-Hodel AR, Wald JH, Hatakeyama J, et al. Membrane Mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene. 2018;37(2):197–207. doi:10.1038/onc.2017.327
  • Liu X, Li X, Wei H, et al. Mast cells in colorectal cancer tumour progression, angiogenesis, and lymphangiogenesis. Front Immunol. 2023;14:1209056. doi:10.3389/fimmu.2023.1209056