186
Views
1
CrossRef citations to date
0
Altmetric
Oncology

Comprehensive Analysis Reveals the Potential Roles of CDKN3 in Pancancer and Verification in Endometrial Cancer

, ORCID Icon, ORCID Icon, , , , , & show all
Pages 5817-5839 | Received 18 Sep 2023, Accepted 29 Nov 2023, Published online: 10 Dec 2023

References

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. doi:10.3322/caac.21763
  • Wei W, Zeng H, Zheng R, et al. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol. 2020;21(7):e342–e349. doi:10.1016/s1470-2045(20)30073-5
  • Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Cress WD, Yu P, Wu J. Expression and alternative splicing of the cyclin-dependent kinase inhibitor-3 gene in human cancer. Int J Biochem Cell Biol. 2017;91(Pt B):98–101. doi:10.1016/j.biocel.2017.05.013
  • Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. doi:10.1186/gb4184
  • Yu Y, Jiang X, Schoch BS, Carroll RS, Black PM, Johnson MD. Aberrant splicing of cyclin-dependent kinase-associated protein phosphatase KAP increases proliferation and migration in glioblastoma. Cancer Res. 2007;67(1):130–138. doi:10.1158/0008-5472.Can-06-2478
  • Li WH, Zhang L, Wu YH. CDKN3 regulates cisplatin resistance to colorectal cancer through TIPE1. Eur Rev Med Pharmacol Sci Apr. 2020;24(7):3614–3623. doi:10.26355/eurrev_202004_20823
  • Barrón EV, Roman-Bassaure E, Sánchez-Sandoval AL, et al. CDKN3 mRNA as a biomarker for survival and therapeutic target in cervical cancer. PLoS One. 2015;10(9):e0137397. doi:10.1371/journal.pone.0137397
  • Liu D, Zhang J, Wu Y, et al. YY1 suppresses proliferation and migration of pancreatic ductal adenocarcinoma by regulating the CDKN3/MdM2/P53/P21 signaling pathway. Int J Cancer. 2018;142(7):1392–1404. doi:10.1002/ijc.31173
  • Li Y, Ji S, Fu LY, Jiang T, Wu D, Meng FD. Knockdown of cyclin-dependent kinase inhibitor 3 inhibits proliferation and invasion in human gastric cancer cells. Oncol Res. 2017;25(5):721–731. doi:10.3727/096504016x14772375848616
  • Liu J, Min L, Zhu S, et al. Cyclin-dependent kinase inhibitor 3 promoted cell proliferation by driving cell cycle from G1 to S phase in esophageal squamous cell carcinoma. J Cancer. 2019;10(8):1915–1922. doi:10.7150/jca.27053
  • Wang H, Chen H, Zhou H, Yu W, Lu Z. Cyclin-dependent kinase inhibitor 3 promotes cancer cell proliferation and tumorigenesis in nasopharyngeal carcinoma by targeting p27. Oncol Res. 2017;25(9):1431–1440. doi:10.3727/096504017x14835311718295
  • Pan XW, Zhang H, Xu D, et al. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci. 2020;16(16):3149–3162. doi:10.7150/ijbs.46645
  • Srinivas V, Kitagawa M, Wong J, Liao PJ, Lee SH. The tumor suppressor Cdkn3 is required for maintaining the proper number of centrosomes by regulating the centrosomal stability of Mps1. Cell Rep. 2015;13(8):1569–1577. doi:10.1016/j.celrep.2015.10.039
  • Nalepa G, Barnholtz-Sloan J, Enzor R, et al. The tumor suppressor CDKN3 controls mitosis. J Cell Biol. 2013;201(7):997–1012. doi:10.1083/jcb.201205125
  • Abdel-Tawab MS, Fouad H, Othman AM, et al. Evaluation of gene expression of PLEKHS1, AADAC, and CDKN3 as novel genomic markers in gastric carcinoma. PLoS One. 2022;17(4):e0265184. doi:10.1371/journal.pone.0265184
  • Chen Q, Chen K, Guo G, et al. A critical role of CDKN3 in Bcr-Abl-mediated tumorigenesis. PLoS One. 2014;9(10):e111611. doi:10.1371/journal.pone.0111611
  • Dai W, Miao H, Fang S, Fang T, Chen N, Li M. CDKN3 expression is negatively associated with pathological tumor stage and CDKN3 inhibition promotes cell survival in hepatocellular carcinoma. Mol Med Rep. 2016;14(2):1509–1514. doi:10.3892/mmr.2016.5410
  • Zhang LP, Li WJ, Zhu YF, et al. CDKN3 knockdown reduces cell proliferation, invasion and promotes apoptosis in human ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):4535–4544.
  • Deng M, Wang J, Chen Y, et al. Silencing cyclin-dependent kinase inhibitor 3 inhibits the migration of breast cancer cell lines. Mol Med Rep. 2016;14(2):1523–1530. doi:10.3892/mmr.2016.5401
  • da Silva Maués JH, Ferreira Ribeiro H, De maria maués sacramento R, et al. Downregulated genes by silencing MYC pathway identified with RNA-SEQ analysis as potential prognostic biomarkers in gastric adenocarcinoma. Aging. 2020;12(24):24651–24670. doi:10.18632/aging.202260
  • Fan C, Chen L, Huang Q, et al. Overexpression of major CDKN3 transcripts is associated with poor survival in lung adenocarcinoma. Br J Cancer. 2015;113(12):1735–1743. doi:10.1038/bjc.2015.378
  • Xu WH, Wu J, Wang J, et al. Screening and identification of potential prognostic biomarkers in adrenocortical carcinoma. Front Genet. 2019;10:821. doi:10.3389/fgene.2019.00821
  • Mori J, Sawada T, Baba T, et al. Identification of cell cycle-associated and -unassociated regulators for expression of a hepatocellular carcinoma oncogene cyclin-dependent kinase inhibitor 3. Biochem Biophys Res Commun. 2022;625:46–52. doi:10.1016/j.bbrc.2022.07.088
  • Crosbie EJ, Kitson SJ, McAlpine JN, Mukhopadhyay A, Powell ME, Singh N. Endometrial cancer. Lancet. 2022;399(10333):1412–1428. doi:10.1016/s0140-6736(22)00323-3
  • Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6(10):813–823. doi:10.1038/nrc1951
  • Klutstein M, Nejman D, Greenfield R, Cedar H. DNA methylation in cancer and aging. Cancer Res. 2016;76(12):3446–3450. doi:10.1158/0008-5472.Can-15-3278
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi:10.1038/npp.2012.112
  • Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20(1):43–49. doi:10.1096/fj.05-4707com
  • Long ZJ, Wang JD, Xu JQ, Lei XX, Liu Q. cGAS/STING cross-talks with cell cycle and potentiates cancer immunotherapy. Mol Ther. 2022;30(3):1006–1017. doi:10.1016/j.ymthe.2022.01.044
  • Zhang W, Liu W, Jia L, et al. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell. 2021;81(10):2148–2169. doi:10.1016/j.molcel.2021.02.038
  • Wang J, Che W, Wang W, Su G, Zhen T, Jiang Z. CDKN3 promotes tumor progression and confers cisplatin resistance via RAD51 in esophageal cancer. Cancer Manag Res. 2019;11:3253–3264. doi:10.2147/cmar.S193793
  • Li M, Che N, Jin Y, Li J, Yang W. CDKN3 overcomes bladder cancer cisplatin resistance via LDHA-dependent glycolysis reprogramming. Onco Targets Ther. 2022;15:299–311. doi:10.2147/ott.S358008
  • Lee SW, Reimer CL, Fang L, Iruela-Arispe ML, Aaronson SA. Overexpression of kinase-associated phosphatase (KAP) in breast and prostate cancer and inhibition of the transformed phenotype by antisense KAP expression. Mol Cell Biol. 2000;20(5):1723–1732. doi:10.1128/mcb.20.5.1723-1732.2000
  • Gyuris J, Golemis E, Chertkov H, Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993;75(4):791–803. doi:10.1016/0092-8674(93)90498-f
  • Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Mol Cell. 2001;7(3):615–626. doi:10.1016/s1097-2765(01)00208-8
  • Lolli G, Lowe ED, Brown NR, Johnson LN. The crystal structure of human CDK7 and its protein recognition properties. Structure. 2004;12(11):2067–2079. doi:10.1016/j.str.2004.08.013
  • Hannon GJ, Casso D, Beach D. KAP: a dual specificity phosphatase that interacts with cyclin-dependent kinases. Proc Natl Acad Sci U S A. 1994;91(5):1731–1735. doi:10.1073/pnas.91.5.1731
  • Poon RY, Hunter T. Dephosphorylation of Cdk2 Thr 160 by the cyclin-dependent kinase-interacting phosphatase KAP in the absence of cyclin. Science. 1995;270(5233):90. doi:10.1126/science.270.5233.90
  • Fauman EB, Saper MA. Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci. 1996;21(11):413–417. doi:10.1016/s0968-0004(96)10059-1
  • Poon RY. Generation of phosphorylated cyclin-dependent kinase 2 and functional characterization of threonine-160-specific phosphatase KAP. Methods Enzymol. 1997;283:283–292. doi:10.1016/s0076-6879(97)83023-6
  • Brown NR, Noble ME, Lawrie AM, et al. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J Biol Chem. 1999;274(13):8746–8756. doi:10.1074/jbc.274.13.8746
  • Barford D. The mechanism of protein kinase regulation by protein phosphatases. Biochem Soc Trans. 2001;29(10):2148–2165.e9. doi:10.1016/j.molcel.2021.02.038
  • Yeh CT, Lu SC, Chao CH, Chao ML. Abolishment of the interaction between cyclin-dependent kinase 2 and Cdk-associated protein phosphatase by a truncated KAP mutant. Biochem Biophys Res Commun. 2003;305(2):311–314. doi:10.1016/s0006-291x(03)00757-5
  • Chinami M, Yano Y, Yang X, et al. Binding of HTm4 to Cyclin-dependent Kinase (Cdk)-associated Phosphatase (KAP)·Cdk2·Cyclin A complex enhances the phosphatase activity of KAP, dissociates Cyclin A, and facilitates KAP Dephosphorylation of Cdk2. J Biol Chem. 2005;280(17):1731–1735. doi:10.1073/pnas.91.5.1731
  • Espinosa AM, Alfaro A, Roman-Basaure E, et al. Mitosis is a source of potential markers for screening and survival and therapeutic targets in cervical cancer. PLoS One. 2013;8(2):e55975. doi:10.1371/journal.pone.0055975
  • Yu C, Cao H, He X, et al. Cyclin-dependent kinase inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regulating cell cycle and DNA replication signaling. Biomed Pharmacother. 2017;96:1109–1118. doi:10.1016/j.biopha.2017.11.112
  • Xing C, Xie H, Zhou L, et al. Cyclin-dependent kinase inhibitor 3 is overexpressed in hepatocellular carcinoma and promotes tumor cell proliferation. Biochem Biophys Res Commun. 2012;420(1):29–35. doi:10.1016/j.bbrc.2012.02.107
  • Yu H, Yao J, Du M, Ye J, He X, Yin L. CDKN3 promotes cell proliferation, invasion and migration by activating the AKT signaling pathway in esophageal squamous cell carcinoma. Oncol Lett. 2020;19(1):542–548. doi:10.3892/ol.2019.11077
  • Jiang Y, Lyu T, Che X, Jia N, Li Q, Feng W. Overexpression of SMYD3 in ovarian cancer is associated with ovarian cancer proliferation and apoptosis via methylating H3K4 and H4K20. J Cancer. 2019;10(17):4072–4084. doi:10.7150/jca.29861
  • Li X, Ni M, Xiong W, et al. Transcriptomics analysis and benchmark concentration estimating-based in vitro test with IOSE80 cells to unveil the mode of action for female reproductive toxicity of bisphenol A at human-relevant levels. Ecotoxicol Environ Saf. 2022;237:113523. doi:10.1016/j.ecoenv.2022.113523
  • Lee J, Sung CO, Lee EJ, et al. Metastasis of neuroendocrine tumors are characterized by increased cell proliferation and reduced expression of the ATM gene. PLoS One. 2012;7(4):e34456. doi:10.1371/journal.pone.0034456
  • Baldi A, Piccolo MT, Boccellino MR, et al. Apoptosis induced by piroxicam plus cisplatin combined treatment is triggered by p21 in mesothelioma. PLoS One. 2011;6(8):e23569. doi:10.1371/journal.pone.0023569
  • Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P. ZNF677 suppresses Akt phosphorylation and tumorigenesis in thyroid cancer. Cancer Res. 2018;78(18):5216–5228. doi:10.1158/0008-5472.Can-18-0003
  • Islam MA, Hossen MB, Horaira MA, et al. Exploring core genes by comparative transcriptomics analysis for early diagnosis, prognosis, and therapies of colorectal cancer. Cancers (Basel). 2023;15(5):1369. doi:10.3390/cancers15051369
  • Yang C, Wei Y, Li W, et al. Prognostic risk signature and comprehensive analyses of endoplasmic reticulum stress-related genes in lung adenocarcinoma. J Immunol Res. 2022;2022:6567916. doi:10.1155/2022/6567916
  • Yang B, Luo L, Luo W, et al. The genomic dynamics during progression of lung adenocarcinomas. J Hum Genet. 2017;62(8):783–788. doi:10.1038/jhg.2017.40
  • Qi L, Zhou B, Chen J, et al. Significant prognostic values of differentially expressed-aberrantly methylated hub genes in breast cancer. J Cancer. 2019;10(26):6618–6634. doi:10.7150/jca.33433
  • Sang L, Wang XM, Xu DY, Zhao WJ. Bioinformatics analysis of aberrantly methylated-differentially expressed genes and pathways in hepatocellular carcinoma. World J Gastroenterol. 2018;24(24):2605–2616. doi:10.3748/wjg.v24.i24.2605
  • Li Y, Wei Z, Huang S, Yang B. mRNA expression and DNA methylation analysis of the inhibitory mechanism of H(2)O(2) on the proliferation of A549 cells. Oncol Lett. 2020;20(6):288. doi:10.3892/ol.2020.12151
  • Niculescu MD, Yamamuro Y, Zeisel SH. Choline availability modulates human neuroblastoma cell proliferation and alters the methylation of the promoter region of the cyclin-dependent kinase inhibitor 3 gene. J Neurochem. 2004;89(5):1252–1259. doi:10.1111/j.1471-4159.2004.02414.x
  • Ma Z, Liu Y, Hao Z, Hua X, Li W. DNA hypermethylation of Aurora kinase A in hepatitis C virus-positive hepatocellular carcinoma. Mol Med Rep. 2019;20(3):2519–2532. doi:10.3892/mmr.2019.10487
  • Yaqinuddin A, Qureshi SA, Qazi R, Abbas F. Down-regulation of DNMT3b in PC3 cells effects locus-specific DNA methylation, and represses cellular growth and migration. Cancer Cell Int. 2008;8(1):13. doi:10.1186/1475-2867-8-13
  • Nowosad A, Jeannot P, Callot C, et al. p27 controls Ragulator and mTOR activity in amino acid-deprived cells to regulate the autophagy-lysosomal pathway and coordinate cell cycle and cell growth. Nat Cell Biol. 2020;22(9):1076–1090. doi:10.1038/s41556-020-0554-4
  • Yang C, Chen L, Niu Q, et al. Identification and validation of an E2F-related gene signature for predicting recurrence-free survival in human prostate cancer. Cancer Cell Int. 2022;22(1):382. doi:10.1186/s12935-022-02791-9
  • Li S, Xue P, Diao X, et al. Identification and validation of functional roles for three MYC-associated genes in hepatocellular carcinoma. J Adv Res. 2023;54:133–146. doi:10.1016/j.jare.2023.01.010
  • Miao Y, Cui L, Chen Z, Zhang L. Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. Pharm Biol. 2016;54(4):660–666. doi:10.3109/13880209.2015.1071414
  • Tang B, Hu L, Jiang T, et al. A metabolism-related gene prognostic index for prediction of response to immunotherapy in lung adenocarcinoma. Int J Mol Sci. 2022;23(20):12143. doi:10.3390/ijms232012143
  • Yang Y, Deng X, Chen X, et al. Landscape of active enhancers developed de novo in cirrhosis and conserved in hepatocellular carcinoma. Am J Cancer Res. 2020;10(10):3157–3178.
  • Yao S, Deng M, Du X, Huang R, Chen Q. A novel hypoxia related marker in blood link to aid diagnosis and therapy in osteoarthritis. Genes. 2022;13(9):1501. doi:10.3390/genes13091501
  • Qian XF, Zhang JH, Mai YX, et al. A novel insight into paraptosis-related classification and signature in lower-grade gliomas. Int J Genomics. 2022;2022:6465760. doi:10.1155/2022/6465760
  • Simpson NE, Tryndyak VP, Pogribna M, Beland FA, Pogribny IP. Modifying metabolically sensitive histone marks by inhibiting glutamine metabolism affects gene expression and alters cancer cell phenotype. Epigenetics. 2012;7(12):1413–1420. doi:10.4161/epi.22713
  • Turpaev K, Glatigny A, Bignon J, Delacroix H, Drapier JC. Variation in gene expression profiles of human monocytic U937 cells exposed to various fluxes of nitric oxide. Free Radic Biol Med. 2010;48(2):298–305. doi:10.1016/j.freeradbiomed.2009.10.054
  • Donato JL, Ko J, Kutok JL, et al. Human HTm4 is a hematopoietic cell cycle regulator. J Clin Invest. 2002;109(1):51–58. doi:10.1172/jci14025
  • Iriuchijima N, Sato-Harada R, Takano M, et al. Reduced expression of kinase-associated phosphatase in cortical dendrites of MAP2-deficient mice. Biochem Biophys Res Commun. 2005;338(2):1216–1221. doi:10.1016/j.bbrc.2005.10.077
  • Ozawa S, Gamou T, Habano W, et al. Altered expression of GADD45 genes during the development of chemical-mediated liver hypertrophy and liver tumor promotion in rats. J Toxicol Sci. 2011;36(5):613–623. doi:10.2131/jts.36.613
  • Alvarez MS, Fernandez-Alvarez A, Cucarella C, Casado M. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence. Biochem Biophys Res Commun. 2014;447(1):51–56. doi:10.1016/j.bbrc.2014.03.104
  • Zhang M, Wang X, Yao J, Qiu Z. Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artif Cells Nanomed Biotechnol. 2019;47(1):3129–3137. doi:10.1080/21691401.2019.1646264
  • Pabla S, Conroy JM, Nesline MK, et al. Proliferative potential and resistance to immune checkpoint blockade in lung cancer patients. J Immunother Cancer. 2019;7(1):27. doi:10.1186/s40425-019-0506-3
  • Chen CF, Feng X, Liao HY, et al. Regulation of T cell proliferation by JMJD6 and PDGF-BB during chronic hepatitis B infection. Sci Rep. 2014;4(1):6359. doi:10.1038/srep06359
  • Chen Y, Chen Z, Mo J, et al. Identification of HCG18 and MCM3AP-AS1 that associate with bone metastasis, poor prognosis and increased abundance of M2 macrophage infiltration in prostate cancer. Technol Cancer Res Treat. 2021;20:1533033821990064. doi:10.1177/1533033821990064
  • Iwai Y, Hamanishi J, Chamoto K, Honjo T. Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci. 2017;24(1):26. doi:10.1186/s12929-017-0329-9
  • Deng Y, Song Z, Huang L, et al. Tumor purity as a prognosis and immunotherapy relevant feature in cervical cancer. Aging. 2021;13(22):24768–24785. doi:10.18632/aging.203714
  • Jiang S, Ding X, Wu Q, Cheng T, Xu M, Huang J. Identifying immune cells-related phenotype to predict immunotherapy and clinical outcome in gastric cancer. Front Immunol. 2022;13:980986. doi:10.3389/fimmu.2022.980986
  • Korbecki J, Kojder K, Kapczuk P, et al. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors-A review of literature. Int J Mol Sci. 2021;22(2):843. doi:10.3390/ijms22020843
  • Chang TT, Chen C, Chen JW. CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease. Cardiovasc Diabetol. 2022;21(1):185. doi:10.1186/s12933-022-01626-1
  • Dangi A, Husain I, Jordan CZ, et al. Blocking CCL8-CCR8-mediated early allograft inflammation improves kidney transplant function. J Am Soc Nephrol. 2022;33(10):1876–1890. doi:10.1681/asn.2022020139
  • Korbecki J, Kojder K, Simińska D, et al. CC chemokines in a tumor: a review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int J Mol Sci. 2020;21(21):7619.
  • Dostert C, Grusdat M, Letellier E, Brenner D. The TNF family of ligands and receptors: communication modules in the immune system and beyond. Physiol Rev. 2019;99(1):115–160. doi:10.1152/physrev.00045.2017
  • Cekanova M, Yuan JS, Li X, Kim K, Baek SJ. Gene alterations by peroxisome proliferator-activated receptor gamma agonists in human colorectal cancer cells. Int J Oncol. 2008;32(4):809–819.
  • Mohr T, Katz S, Paulitschke V, Aizarani N, Tolios A. Systematic analysis of the transcriptome profiles and co-expression networks of tumour endothelial cells identifies several tumour-associated modules and potential therapeutic targets in hepatocellular carcinoma. Cancers. 2021;13(8). doi:10.3390/cancers1308176
  • Khaleghi S, Aziz AA, Razali N, Junit SM. Microarray analysis revealed different gene expression patterns in HepG2 cells treated with low and high concentrations of the extracts of Anacardium occidentale shoots. Genes Nutr. 2011;6(4):413–427. doi:10.1007/s12263-011-0216-z
  • Chen Q, Wang L, Wu H, et al. Specific blood RNA profiles in individuals with acute spinal cord injury as compared with trauma controls. Oxid Med Cell Longev. 2023;2023:1485135. doi:10.1155/2023/1485135
  • Şiğva Z D, Balci Okcanoğlu T, Avci Ç B, et al. Investigation of the synergistic effects of paclitaxel and herbal substances and endemic plant extracts on cell cycle and apoptosis signal pathways in prostate cancer cell lines. Gene. 2019;687:261–271. doi:10.1016/j.gene.2018.11.049
  • Alkhezayem S, Wani TA, Wakil S, Aljuraysi A, Zargar S. Transcriptome analysis of neratinib treated HER2 positive cancer model vs untreated cancer unravels the molecular mechanism of action of neratinib. Saudi Pharm J. 2020;28(8):963–970. doi:10.1016/j.jsps.2020.06.017
  • Chen H, Wu J, Lu L, et al. Identification of hub genes associated with immune infiltration and predict prognosis in hepatocellular carcinoma via bioinformatics approaches. Front Genet. 2021;11:575762. doi:10.3389/fgene.2020.575762