132
Views
0
CrossRef citations to date
0
Altmetric
Oncology

Lnc-SNHG5 Promoted Hepatocellular Carcinoma Progression Through the RPS3-NFκB Pathway

, , , , , , & ORCID Icon show all
Pages 5651-5664 | Received 03 Oct 2023, Accepted 27 Nov 2023, Published online: 30 Nov 2023

References

  • Bao L, Li P, Zhao H, et al. Pseudogene PLGLA exerts anti-tumor effects on hepatocellular carcinoma through modulating miR-324-3p/GLYATL1 axis. Dig Liver Dis. 2022;54(7):918–926. doi:10.1016/j.dld.2021.10.003
  • Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262
  • Zhang S, Zhou Y, Wang Y, et al. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Briefings Bioinf. 2021;22(2):1860–1883. doi:10.1093/bib/bbaa023
  • Sun JH, Luo Q, Liu LL, et al. Liver cancer stem cell markers: progression and therapeutic implications. World J Gastroenterol. 2016;22(13):3547–3557. doi:10.3748/wjg.v22.i13.3547
  • Dagogo-Jack I, Shaw AT. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018;15(2):81–94. doi:10.1038/nrclinonc.2017.166
  • Huang Z, Zhou JK, Peng Y, et al. The role of long noncoding RNAs in hepatocellular carcinoma. Mol Cancer. 2020;19(1):77. doi:10.1186/s12943-020-01188-4
  • Lai Y, Huang H, Abudoureyimu M, et al. Non-coding RNAs: emerging regulators of glucose metabolism in hepatocellular carcinoma. Am J Cancer Res. 2020;10(12):4066–4084.
  • Wang M, Yu F, Chen X, et al. The underlying mechanisms of noncoding RNAs in the chemoresistance of hepatocellular carcinoma. Mol Ther Nucleic Acids. 2020;21:13–27. doi:10.1016/j.omtn.2020.05.011
  • Wong LS, Wong CM. Decoding the roles of long noncoding RNAs in hepatocellular carcinoma. Int J Mol Sci. 2021;22(6):3137. doi:10.3390/ijms22063137
  • Zhang F, Li Y, Gan L, et al. HBx-upregulated MAFG-AS1 promotes cell proliferation and migration of hepatoma cells by enhancing MAFG expression and stabilizing nonmuscle myosin IIA. FASEB J. 2021;35(5):e21529.
  • Yukimoto A, Watanabe T, Sunago K, et al. The long noncoding RNA of RMRP is downregulated by PERK, which induces apoptosis in hepatocellular carcinoma cells. Sci Rep. 2021;11(1):7926. doi:10.1038/s41598-021-86592-6
  • Chen K, Hou Y, Liao R, et al. LncRNA SNHG6 promotes G1/S-phase transition in hepatocellular carcinoma by impairing miR-204-5p-mediated inhibition of E2F1. Oncogene. 2021;40(18):3217–3230. doi:10.1038/s41388-021-01671-2
  • Luo M, Liu Z, Hu Z, et al. Quercetin improves contrast-induced acute kidney injury through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. Pharm Biol. 2022;60(1):889–898. doi:10.1080/13880209.2022.2058558
  • Han JB, Wang Y, Yang R, et al. LncRNA FAM225A activates the cGAS-STING signaling pathway by combining FUS to promote CENP-N expression and regulates the progression of nasopharyngeal carcinoma. Pathol Res Pract. 2022;236:154005. doi:10.1016/j.prp.2022.154005
  • Qin Y, Sun W, Wang Z, et al. Long Non-Coding small nucleolar RNA host genes (SNHGs) in endocrine-related cancers. Onco Targets Ther. 2020;13:7699–7717. doi:10.2147/OTT.S267140
  • Xiao X, Xu J, Sheng X, Wang C, Dong J, Shi X. Tobacco nicotine promotes TRAIL resistance in lung cancer through SNHG5. Exp Ther Med. 2023;25(3):131. doi:10.3892/etm.2023.11830
  • Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986;46(5):705–716. doi:10.1016/0092-8674(86)90346-6
  • Macià A, Vaquero M, Gou-Fàbregas M, et al. Sprouty1 induces a senescence-associated secretory phenotype by regulating NFκB activity: implications for tumorigenesis. Cell Death Differ. 2014;21(2):333–343. doi:10.1038/cdd.2013.161
  • Yang G, Wang Y, Feng J, et al. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling. Biochem Biophys Res Commun. 2017;486(3):827–832. doi:10.1016/j.bbrc.2017.03.139
  • Leslie J, Hunter JE, Collins A, et al. c-Rel-dependent Chk2 signaling regulates the DNA damage response limiting hepatocarcinogenesis. Hepatology. 2023;78(4):1050–1063. doi:10.1002/hep.32781
  • Cao J, Wu L, Lei X, et al. Long non-coding RNA-based signature for predicting prognosis of hepatocellular carcinoma. Bioengineered. 2021;12(1):673–681. doi:10.1080/21655979.2021.1878763
  • Ding X, Xu X, He XF, et al. Muscleblind-like 1 antisense RNA 1 inhibits cell proliferation, invasion, and migration of prostate cancer by sponging miR-181a-5p and regulating PTEN/PI3K/AKT/mTOR signaling. Bioengineered. 2021;12(1):803–814. doi:10.1080/21655979.2021.1890383
  • Li YH, Hu YQ, Wang SC, et al. LncRNA SNHG5: a new budding star in human cancers. Gene. 2020;749:144724. doi:10.1016/j.gene.2020.144724
  • Yu L, Huo L, Shao X, et al. lncRNA SNHG5 promotes cell proliferation, migration and invasion in oral squamous cell carcinoma by sponging miR-655-3p/FZD4 axis. Oncol Lett. 2020;20(6):310. doi:10.3892/ol.2020.12173
  • Li W, Lu Y, Wu Y, et al. SNHG5 functions as competitive RNA with miR-23c to regulate HMGB2 expression in hepatocellular carcinoma. Am J Transl Res. 2020;12(5):2192–2200.
  • Li Y, Hu J, Guo D, et al. LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and Wnt-signaling pathway. Cancer Gene Therapy. 2022;29(10):1373–1383. doi:10.1038/s41417-022-00456-3
  • Li Y, Guo D, Zhao Y, et al. Long non-coding RNA SNHG5 promotes human hepatocellular carcinoma progression by regulating miR-26a-5p/GSK3β signal pathway. Cell Death Dis. 2018;9(9):888. doi:10.1038/s41419-018-0882-5
  • Ceci M, Fazi F, Romano N. The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis. 2021;1867(4):166046. doi:10.1016/j.bbadis.2020.166046
  • Harold CM, Buhagiar AF, Cheng Y, et al. Ribosomal RNA transcription regulation in breast cancer. Genes. 2021;12(4):502. doi:10.3390/genes12040502
  • Schäfer T, Maco B, Petfalski E, et al. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. Nature. 2006;441(7093):651–655. doi:10.1038/nature04840
  • Kim HD, Kim TS, Kim J. Aberrant ribosome biogenesis activates c-Myc and ASK1 pathways resulting in p53-dependent G1 arrest. Oncogene. 2011;30(30):3317–3327. doi:10.1038/onc.2011.47
  • Kim Y, Kim HD, Kim J. Cytoplasmic ribosomal protein S3 (rpS3) plays a pivotal role in mitochondrial DNA damage surveillance. Biochim Biophys Acta. 2013;1833(12):2943–2952. doi:10.1016/j.bbamcr.2013.07.015
  • Alam E, Maaliki L, Nasr Z. Ribosomal protein S3 selectively affects colon cancer growth by modulating the levels of p53 and lactate dehydrogenase. Mol Biol Rep. 2020;47(8):6083–6090. doi:10.1007/s11033-020-05683-1
  • Zhao L, Cao J, Hu K, et al. RNA-binding protein RPS3 contributes to hepatocarcinogenesis by post-transcriptionally up-regulating SIRT1. Nucleic Acids Res. 2019;47(4):2011–2028. doi:10.1093/nar/gky1209
  • Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16(1):225–260. doi:10.1146/annurev.immunol.16.1.225
  • Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol. 2018;18(5):309–324. doi:10.1038/nri.2017.142
  • Pikarsky E, Porat RM, Stein I, et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature. 2004;431(7007):461–466. doi:10.1038/nature02924
  • Wan F, Anderson DE, Barnitz RA, et al. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell. 2007;131(5):927–939. doi:10.1016/j.cell.2007.10.009
  • Hodgson A, Wier EM, Fu K, et al. Metalloprotease NleC suppresses host NF-κB/inflammatory responses by cleaving p65 and interfering with the p65/RPS3 interaction. PLoS Pathog. 2015;11(3):e1004705. doi:10.1371/journal.ppat.1004705