131
Views
1
CrossRef citations to date
0
Altmetric
Review

Role of cytokines in the pathogenesis of acute and chronic kidney disease, glomerulonephritis, and end-stage kidney disease

&
Pages 49-62 | Published online: 14 May 2010

References

  • Jaber B, Rao M, Guo D, et al. Cytokine gene promoter polymorphisms and mortality in acute renal failure. Cytokine. 2004;25(5):212–219.
  • Carrero J, Park S, Axelsson J, Lindholm B, Stenvinkel P. Cytokines, atherogenesis, and hypercatabolism in chronic kidney disease: a dreadful triad. Semin Dialys. 2009;22(4):381–386.
  • Stenvinkel P, Ketteler M, Johnson R, et al. IL-10,IL-6, and TNF-α: central factors in the altered cytokine network of uremia. The good, the bad, and the ugly. Kidney Int. 2005;67:1216–1233.
  • Caglar K, Peng Y, Pupim LB, et al. Inflammatory signals associated with hemodialysis. Kidney Int. 2002;62:1408–1416.
  • Schindler R, Krautzig S, Lufft V et al. Induction of interleukin-1 and interleukin-1 receptor antagonist during contaminated in vitro dialysis with white whole blood. Nephrol Dial Transplant. 1996;11:101–108.
  • Descamps-Latscha B, Herbelin A, Nguyen AT, et al. Balance between IL-1-β, TNF-a, and their specific inhibitors in chronic renal failure and maintenance dialysis. J Immunol. 1995;154:882–892.
  • Girndt M, Kohler H, Schiedhelm-Weick E, et al. Production of interleukin-6, tumor necrosis factor alpha, and interleukin-10 in vitro correlates with the clinical immune defect in chronic hemodialysis patients. Kidney Int. 1995;47:559–565.
  • Nonner JC, Brody AR. Cytokine-binding proteins in the lung. Am J Physiol. 1995;268:L869–L878.
  • Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–936.
  • Kelly KJ, Molitoris BA. Acute renal failure in the new millennium: time to consider combination therapy. Semin Nephrol. 2000;20:4–19.
  • Vijayan A, Miller SB. Acute renal failure: prevention and non-dialytic therapy. Semin Nephrol. 1998;18:523–532.
  • Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16–S24.
  • Sutton T, Fisher C, Molitoris B. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62:1539–1549.
  • Hack CE, Zeerleder S. The endothelium in sepsis: source of and target for inflammation. Crit Care Med. 2001;29 Suppl 7:S21–S27.
  • Ashworth SL, Molitoris BA. Pathophysiology and functional significance of apical membrane disruption during ischemia. Opin Nephrol Hypertens. 1999;8:449–458.
  • Star RA. Treatment of acute renal failure. Kidney Int. 1998;54:1817–1831.
  • Donnahoo KK, Meldrum DR, Shenkar R, et al. Early renal ischemia, with or without reperfusion, activates NF-kappaB and increases TNF-alpha bioactivity in the kidney. J Urol. 2000;163:1328–1332.
  • Kelly KJ, Plotkin Z, Dagher PC. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J Clin Invest. 2001;108:1291–1298.
  • Donnahoo KK, Meng X, Ayala A, et al. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol. 1999;277:R922–R929.
  • Ysebaert DK, de Greef KE, Vercauteren SR, et al. Identification and kinetics of leukocytes after severe ischemia/reperfusion renal injury. Nephrol Dial Transplant. 2000;15:1562–1574.
  • Willinger CC, Schramer H, Pfaller K, Pfaller W. Tissue distribution of neutrophils in postischemic acute renal failure. Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62:237–243.
  • Schena FP Role of growth factors in acute renal failure. Kidney Int Suppl. 1998;66:S11–S15.
  • Burne MJ, Daniels F, El Ghandour A, et al. Identification of the CD4(+) T cell as a mayor pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001;108:1283–1290.
  • Park P, Haas M, Cunningham PN, et al. Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol (Renal Physiol). 2002;282:F352–F357.
  • Molitoris BA, Marrs J. The role of cell adhesion molecules in ischemic acute renal failure. Am J Med. 1999;106:583–592.
  • Ichikawa H, Flores S, Kvietys PR, et al. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultures endothelial cells. Cir Res. 1997;81:922–931.
  • Okusa MD, Linden J, Hunag L, et al. Enhanced protection from renal ischemia: reperfusion injury with A(2A)-adenosine receptor activation and PDE 4 inhibition. Kidney Int. 2001;59:2114–2125.
  • Cunningham P, Dyanov H, Park P, Wang J, Newell K, Quigg R. Acute renal failure in endotoxemia is caused by TNF acting directly on TNF receptor-1 in kidney. J Immunol. 2002;168(11):5817–5823.
  • Van Deventer S, Buller S, ten Cate J, Arden A, Hack C, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood. 1990;76(12):2520–2526.
  • Peschon J, Torrance K, Stocking M, et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J Immunol. 1998;160(2):943–952.
  • Maier S, Emmanuilidis M, Entleutner N, et al. Massive chemokine transcription in acute renal failure due to polymicrobial sepsis. Shock. 2000;14(2):187–192.
  • Cohen J, Carlet J. INTERSEPT: an international, multicenter, placebo-controlled trial of monoclonal antibody to human tumor necrosis factor-α in patients with sepsis. Crit Care Med. 1996;24(9):1431–1440.
  • Merouani A, Shpall E, Jones R, Archer PG, Schrier RW. Renal function in high dose chemotherapy and autologous hematopoietic cell support treatment for breast cancer. Kidney Int. 1996;50(3):1026–1031.
  • Deng J, KhondaY, Chiao H, et al. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal failure injury. Kidney Int. 2001;60(6):2118–2128.
  • Kelly KJ, Meehan SM, Colvin RB, Williams WW, Bonventre JV. Protection from toxicant-mediated renal injury in the rat with anti-CD54 antibody. Kidney Int. 1999;56(3):922–931.
  • Pinckard JK, Sheehan KC, Schreiber RD. Ligand-induced formation of the p55 and p75 tumor necrosis factor receptor heterocomplex on intact cells. J Biol Chem. 1997;272:10784–10789.
  • Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity-and diet-induced insulin resistance with salicylate or targeted disruption of Ikkβ. Science. 2001;293(5535):1673–1677.
  • Ramesh G, Reeves W. Inflammatory cytokines in acute renal failure. Kidney Int. 2004;66:S56–S61.
  • Crawel E, Kay R, Sillibourne J, Patel P, Hutchinson I, Woo P. Polymorphic haplotypes of the interleukin-10 5’ flanking region determine variable interleukin-10 transcription and are associated with particular phenotypes ofjuvenile rheumatoid arthritis. Arthritis Rheum. 1999;42:1101–1108.
  • Mira JP, Cariou A, Grali F, et al. Association of TNF-2, a TNF-(alpha) promoter polymorphism with septic shock susceptibility and mortality: a multicenter study. JAMA. 1999;282(6):561–568.
  • Oberholzer A, Oberholzer C, Moldawer L. Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med. 2002;30 Suppl 1:S58–S63.
  • Van Der Poll T, Jansen J, Levi M, ten Cate H, ten Cate JW van Deventer SJ. Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. J Exp Med. 1994;180(5):1985–1988.
  • Cox ED, Hoffmann SC, DiMercurio BS, et al. Cytokine polymorphisms analyses indicate ethnic differences in the allelic distribution of interleukin-2 and interleukin-6. Transplantation. 2001;72(4):720–726.
  • Simmons EM, Himmelfarb J, Sezer MT, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65(4):1357–1365.
  • Bone RC, Grodzin CJ, Balk RA. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest. 1997;112(1):235–243.
  • Gogos CA, Drosou E, Bassaris HP, SkoutelisA. Pro-versus anti-inflammatory cytokine profile in patients with severe sepsis: A marker for prognosis and future therapeutic options. J Infect Dis. 2000;181(1):176–180.
  • Okusawa S, Gelfand JA, Ikejima T, Connelly RJ, Dinarello CA. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest. 1988;81(4):107–114.
  • Friedman G, Jankowski S, Marchant A, Goldman M, Kahn RJ, Vincent JL. Blood interleukin 10 levels parallel the severity of septic shock. J Crit Care. 1997;12(4):183–187.
  • Sfeir T, Saha DC, Astiz M, Rackow A. Role of interleukin-10 in monocyte hyporesponsiveness associated with septic shock. Crit Care Med. 2001;29(1):129–133.
  • Torre-Amione G, Kapadia S, Benedict C, Oral H, Young JB, Mann DL. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: a report from the Studies of Left Ventricular Dysfunction (SOLVD). J Am Coll Cardiol. 1996;27(5):1201–1206.
  • Ertel W, Kremer JP, Kenney J, et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood. 1995;85(5):1341–1347.
  • Paust HK, Turner JE, Steinmetz OM, et al. The interleukin-23/Th17 axis contributes to renal injury in experimental glomeruloneophritis. J Am Soc Nephrol. 2009;20:969–979.
  • Kurts C, Heymann F, Lukacs-Koornek V, Foege J. Role of T cells and dendritic cells in glomerular immunopathology. Semin Immunopathol. 2007;29:317–335.
  • Tipping PG, Holdsworth SR. T cells in crescentic glomerulonephritis. J Am Soc Nephrol. 2006;17:1253–1263.
  • Kitching AR, Turner AL, Wilson GR, et al. IL-12p40 and IL-18 in crescentic glomerulonephritis: IL-12p40 is the key Th1-defining cytokine chain, whereas IL-18 promotes local inflammation and leukocyte recruitment. J Am Soc Nephrol. 2005;16(7):2023–2033.
  • Huang XR, Tipping PG, Shuo L, Holdsworth SR. Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. Kidney Int. 1997;51:94–103.
  • Mu W, Ouyang X, Agarwal A, et al. Il-10 suppresses chemokines, inflammation, and fibrosis in a model of chronic renal disease. J Am Soc Nephrol. 2005;16(12):3651–3660.
  • Segerer S, Schlondorff D. Role of chemokines for the localization of leukocyte subsets in the kidney. Semin Nephrol. 2007;27:260–274.
  • Woltman AM, de Haij S, Boonstra JG, Gobin SJ, Daha MR, van Kooten C. Interleukin-17 and CD40-ligand synergistically enhance cytokine and chemokine production by renal epithelial cells. J Am Soc Nephrol. 2000;11:2044–2055.
  • United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risks of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–853.
  • Hill C, Flyvbjerg A, Grønbæk, et al. The renal expression of transforming growth factor β isoforms and their receptors in acute and chronic experimental diabetes in rats. Endocrinology. 2000;141(3):1196–1208.
  • Roberts AB, McCune BK, Sporn MB. TGF-β-1: regulation of extracellular matrix. Kidney Int. 1992;41:557–559.
  • Marti HP, Lee L, Kashgarian M, Lovett DH. Transforming growth factor β1 stimulates mesangial cell synthesis of the 72-kD type IV collagenase. Am J Pathol. 1994;144;82–94.
  • Nakamura T, Fukui M, Ebihara E, et al. mRNA expression of growth factors in glomeruli from diabetic rats. Diabetes. 1993;42(3):450–456.
  • Kolm V Sauer U, Olgemoller B, Schleicher ED. High glucose-induced TGF-β1 regulates mesangial production of heparin sulphate proteoglycan. Am J Physiol. 1996;70(5):F812–F821.
  • Shankland SJ, Scholey JW. Expression of transforming growth factor p1 during diabetic renal hypertrophy. Kidney Int. 1994;46:430–442.
  • Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanisms of activation of the TGF-β receptor. Nature. 1994;370:341–347.
  • Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J Clin Invest. 1994;93:2431–2437.
  • Guh JY, Yang ML, Yang YL, Chang CC, Chuang LY. Captopril reverses high-glucose induced growth effects on LLC-PK1 cells partly by decreasing transforming growth factor-β receptor protein expression. J Am Soc Nephrol. 1996;7:1207–1215.
  • Flyvbjerg A, Hill C, Grønbæk H, Logan A. Effects of ACE-inhibition on renal TGF-β type II receptor expression in experimental diabetes in rats [abstract]. J Am Soc Nephrol. 1999;10:A3444.
  • Esposito K, Marfella R, Giugliano D. Plasma interleukin-18 concentrations are elevated in type 2 diabetes. Diabetes Care. 2004;27(1):272.
  • Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106(16):2067–2072.
  • Okada S, Shikata K, Matsuda M, et al. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes. 2003;52(10):2586–2593.
  • Schwartz M, Wahl M, Resch K, Radeke HH. IFN gamma induces functional chemokine receptor expression in human mesangial cells. Clin Exp Immunol. 2002;128:285–294.
  • Dai SM, Matsuno H, Nakamura H, Nishioka K, Yudoh K. Interleukin-18 enhances monocyte tumor necrosis factor alpha and interleukin-1beta production induced by direct contact with T-lymphocytes: implications in rheumatoid arthritis. Arthitis Rheum. 2004;50(2):432–443.
  • Nakamura A, Shikata K, Hiramatsu T, et al. Serum interleukin -18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care. 2005;28(12):2890–2895.
  • Broyer M, Meyrier A, Niaudet P, Habbib R. Minimal changes and focal segmental glomerulosclerosis. In: Davison AM, Cameron SJ, Grunfeld JP, Kerr D, Ritz E, editors. Oxford Textbook of Clinical Nephrology, Vol 3. 1st ed. Oxford: Oxford University Press; 1992:299–339.
  • Parry RG, Gillespie KM, Parnham A, Clark GB, Mathieson PW. Interleukin-4 and interleukin-4 receptor polymorphisms in minimal change nephropathy. Clin Sci(Lond). 1999:96:665–668.
  • Lai KW, Wei CL, Tan LK, et al. Over expression of interleukin-13 induces minimal change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476–1485.
  • Cheung W, Wei CL, Seah CC, Jordan SC, Yap HK. Atopy, serum IgE, and interleukin-13 in steroid-responsive nephritic syndrome. Pediatr Nephrol. 2004;19(6):627–632.
  • Van Den Berg JG, Aten J, Chand MA, et al. Interleukin-4 and interleukin-13 act on glomerular visceral epithelial cells. J Am Soc Nephrol. 2000;11(3):413–422.
  • Reiser J, von Gersdorff G, Loos M, et al. Induction of B7–1 in podocytes is associated with nephrotic syndrome. J Clin Invest. 2004;113(10):1390–1397.
  • Garin EH, Diaz L, Mu W, Araya CE, Johnson RJ. Urinary CD80 excretion is increased in idiopathic minimal lesion nephrotic syndrome. J Am Soc Nephrol. 2009;20:260–266.
  • Syrjanen J, Hurme M, Lehtimaki T, Mustonen J, Pasternack A. Polymorphism of the cytokine genes and IgA nephropathy. Kidney Int. 2002;61(3):1079–1085.
  • Rantal I, Mustonen J, Hurme M, et al. Pathogenetic aspects of IgA nephropathy. Nephron. 2001;88:193–198.
  • Shu KH, Lee SH, Cheng CH, et al. Impact of interleukin- 1 receptor antagonist and tumor necrosis factor-alpha gene polymorphism on IgA nephropathy. Kidney Int. 2000;58:783–789.
  • Yano N, Endoh M, Nomoto Y, Sakai H, Fadden K, Rifai A. Phenotypic characterization of cytokine expression in patients with IgA nephropathy, J Clin Immunol. 1997;17(5)396–403.
  • Mezzano SA, Droguett MA, Burgos E, et al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int. 2000;57:147–158.
  • Abbate M, Zoja C, Corna D, Capitano M, Bertani T, Remuzzi G. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol. 1998;9(7):1213–1224.
  • Pichler R, Giachelli CM, Lombardi D, et al. Tubulointerstitial disease in glomerulonephritis: potential role of osteopontin (uropontin). Am J Pathol. 1994:144(5):915–926.
  • Bantis C, Heering PJ, Luther Y, et al. Influence of cytokine gene polymorphisms in focal segmental glomerulosclerosis. Am J Nephrol. 2004;24:427–431.
  • Grassl C, Luckow B, Schlondorff D, Dendorfer U. Transcriptional regulation of the interleukin-6 gene in mesangial cells. J Am Soc Nephrol. 1999;10:1466–1477.
  • Humphreys MH. Human immunodeficiency virus-associated glomerulosclerosis. Kidney Int. 1995;48(2):311–320.
  • Shukla RR, Kuman A, Kimmel PL. Tranforming growth factor beta increases the expression of HIV-1 gene in transfected human mesangial cells. Kidney Int. 1993;44:1022–1029.
  • Bourgoignie JJ, Meneses R, Ortiz C, Jaffe D, Pardo V. The clinical spectrum of renal disease associated with human immunodeficiency virus. Am J Kidney Dis. 1988;12:131–137.
  • Tesar V Masek Z, Rychlik I, et al. Cytokines and adhesion molecules in renal vasculitis and lupus nephritis. Nephrol Dial Transplant. 1998;13(7):1662–1667.
  • Arimura Y, Minoshima S, Kamiya Y, et al. Serum myeloperoxidase and serum cytokines in anti-myeloperoxidase antibody associated glomerulonephritis. Clin Nephrol. 1993;40:256–265.
  • Ooi J, Phoon RKS, Holdsworth SR, Kitching R. IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen. J Am Soc Nephrol. 2009;20:980–989.
  • Dean EG, Wilson GR, Li M, et al. Experimental autoimmune Goodpasture’s disease: a pathogenetic role for both effector cells and antibody in injury. Kidney Int. 2005;67:566–575.
  • Annunziato F, Cosmi L, Santarlasci V et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204(8):1849–1861.
  • Timoshanko JR, Kitching R, Holdsworth SR, Tipping PG. Interleukin-12 from intrinsic cells is an effector of renal injury in crescentic glomerulonephritis. J Am Soc Nephrol. 2001;12:464–471.
  • Atkins R, Nikolic-Paterson DJ, Song Q, Lan HY Modulators of crescentic glomerulonephitis. J Am Soc Nephrol. 1996;7(11):2271–2278.
  • Pertosa G, Grandallo G, Gesualdo L, Schena FP. Clinical relevance of cytokine production in hemodialysis. Kidney Int. 2000; 58 Suppl 76:S104–S111.
  • Pertosa G, Gesualdo J, Bottalico D, Schena FP. Endotoxins modulate chronically tumor necrosis factor alpha and interleukin-6 release by uremic monocytes. Nephrol Dial Transplant. 1995;10:328–333.
  • Dinarello CA. Cytokines as endogenous pyrogens. J Infect Dis. 1999;179 Suppl 2:S294–S304.
  • Hammond EA, Smart D, Toulmond S, Suman-Chauhan N, Hughes J, Hall MD. The interleukin-1 type I receptor is expressed in human hypothalamus. Brain. 1999;122:1697–1707.
  • Takahashi S, Kapas L, Fang J, Krueger JM. Somnogenic relationships between tumor necrosis factor and interleukin-1. Am J Physiol. 1999;276:R1132–R1140.
  • Monier-Faugere MC, Malluche HH. Role of cytokines in renal osteodystrophy. Curr Opin Nephrol Hypertens. 1997;6:327–332.
  • Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T. Autocrine regulation of osteoclast formation and bone resorption by IL-1,TNF-a. J Dent Res. 1999;78(10):1617–1623.
  • Kaizu Y, Kimura M, Yoneyama T, Miyagi K, Hibi I, Kumagai H. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients. Am J Kidney Dis. 1998;31:93–100.
  • Pertosa G, Grandaliano G, Gesualdo L, Ranieri E, Monno R, Schen FP Interleukin-6, interleukin-8, and monocyte chemotactic peptid-1 gene expression and protein synthesis are independently modulated by hemodialysis membranes. Kidney Int. 1998;54:570–579.
  • Hasuike Y, Nonoguchi H, Ito K, et al. Interleukin-6 is a predictor of mortality in stable hemodialysis patients. Am J Nephrol. 2009;30(4):389–398.