54
Views
0
CrossRef citations to date
0
Altmetric
Review

Diabetic encephalopathy: the role of oxidative stress and inflammation in type 2 diabetes

, , &
Pages 75-85 | Published online: 19 Sep 2012

References

  • Rossetti L, Giaccari A, DeFronzo RA. Glucose toxicity. Diabetes Care. 1990;13:610–630.
  • Saltiel A. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001;104:517–529.
  • Idf.org [homepage on the Internet]. International Diabetes Federation: IDF Diabetes Atlas, 5th edn. Brussels, Belgium [updated 2011]. Available from: http://www.idf.org/diabetesatlas. Accessed on Aug 7, 2012.
  • Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med (Berl). 2004;82:510–529.
  • van der Heide LP, Remarkers GMJ, Marten PS. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79:205–221.
  • McCall AL. Cerebral glucose metabolism in diabetes mellitus. Eur J Pharmacol. 2004;490:147–158.
  • Eckel Robert H. Mechanisms of the components of the metabolic syndrome that predispose to diabetes and atherosclerotic CVD. Proc Nutr Soc. 2007;66:82–95.
  • Stratton I, Adler A, Neil A, et al. Prospective association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–412.
  • Gold S, Dziobek I, Sweat V, et al. Hippocampal damage and memory impairments as possible early brain complications of type 2 diabetes. Diabetologia. 2007;50:711–719.
  • Bruehl H, Wolf OT, Sweat V Tirsi A, Richardson S, Convit A. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186–194.
  • Mijnhout GS, Scheltens P, Diamant M, et al. Diabetic encephalopathy: a concept in need of a definition. Diabetologia. 2006;49:1447–1448.
  • Brands A, Kessels R, de Haan E, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type I diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol. 2004;490:159–168.
  • Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.
  • Hernandez-Fonseca J, Rincon J, Pedreanez A, et al. Structural and ultra-structural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res. 2009;2009:329632.
  • Gispen WH, Biessels GJ. Cognition and synaptic plasticity in diabetes mellitus. Trends Neurosci. 2000;23:542–549.
  • McNay EC and Recknagel AK. Brain insulin signaling: a key component of cognitive processes and a potential basis for cognitive impairment in type 2 diabetes. Neurobiol Learn Mem. 2011 ;96:432–442.
  • Ott A, Stolk RP, van Harskamp F, Pols HA, Hofman A, Breteler MM. Diabetes mellitus and the risk of dementia: the Rotterdam study. Neurology. 1999;53:1937–1942.
  • Sima AAF, Zhan W, Kreipk CW, et al. Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud. 2009;6:37–42.
  • Maiese K, Morhan SD, Chong ZZ. Oxidative stress biology and cell injury during type 1 and type 2 diabetes mellitus. Curr Neurovasc Res. 2007;4:63–71.
  • Sima AA. Encephalopathies: the emerging diabetic complications. Acta Diabetol. 2010;47(4):279–293.
  • Böni-Schnetzler M, Donath MY. How biologics targeting the IL-1 system are being considered for the treatment of type 2 diabetes. Br J Clin Pharmacol. Epub April 17, 2012.
  • Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412.
  • Brownlee M. Negative consequences of glycation. Metabolism. 2000;49:9–13.
  • Tomlinson D, Gardiner N. Glucose neurotoxicity. Nature. 2008;9: 36–43.
  • Folli F, Corradi D, Fanti P, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev. 2011;7:313–324.
  • Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002;23:599–622.
  • Giardino I, Edelstein D, Brownlee M. BCL-2 expression or antioxidants prevent hyperglycemia-induced formation of intracellular advanced glycation end products in bovine endothelial cell. J Clin Invest. 1996;97:1422–1428.
  • Toth C, Martinez J, Zochodne D. RAGE, diabetes, and the nervous system. Curr Mol Med. 2007;7:1–11.
  • Vincent A, Perrone L, Sullivan K, et al. Receptor for advanced glycation end products activation injures primary sensory neurons via oxidative stress. Endocrinology. 2007;148:548–558.
  • Bierhaus A, Humpert PM, Morcos M, et al. Understanding RAGE, the receptor for advanced glycation end products. J Mol Med. 2005;83:876–886.
  • Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151:209–210.
  • Fulop T, Larbi A, Douziech N. Insulin receptor and aging. Pathol Biol (Paris). 2003;51:574–580.
  • Adamo M, Raizada MK, LeRoith D. Insulin and insulin-like growth factor receptors in the nervous system. Mol Neurobiol. 1989;3:71–100.
  • Cardoso S, Correia S, Santos R, et al. Insulin is a two-edged knife on the brain. J Alzheimers Dis. 2009;18:483–507.
  • de la Monte SM. Insulin resistance and Alzheimer’s disease. BMB Rep. 2009;42:475–481.
  • Sima AA, Zhang W, Kreipke CW, Rafols JA, Hoffman WH. Inflammation in diabetic encephalopathy is prevented by C-peptide. Rev Diabet Stud. 2009;6:37–42.
  • Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978;272:827–829.
  • Plum L, Schubert M, Bruning J. The role of insulin receptor signaling in the brain. Trends Endocrinol Metab. 2005;16:59–65.
  • Gasparini L, Xu H. Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci. 2003;26:404–406.
  • Wada A, Yokoo H, Yanagita T, Kobayashi H. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci. 2005;99:128–143.
  • Huang C, Lee C, Hsu K. The role of insulin receptor signaling in synaptic plasticity and cognitive function. Chang Gung Med J. 2010;33:115–125.
  • Banks W, Jaspan J, Huang W, Kastin A. Transport of insulin across the blood brain barrier: saturability at euglycemic doses of insulin. Peptides. 1997;18:1423–1429.
  • Wallum BJ, Taborsky GJ Jr, Porte D Jr, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab. 1987;64:1190–1194.
  • Banks WA. The source of cerebral insulin. Eur J Pharmacol. 2004;490:5–12.
  • Kuwabara T, Kagalwala MN, Onuma Y, et al. Insulin biosynthesis in neuronal progenitors derived from adult hippocampus and the olfactory bulb. EMBO Mol Med. 2011;3:742–754.
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–275.
  • López M, Lelliott CJ, Vidal-Puig A. Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. Bioessays. 2007;29:248–261.
  • López M, Lage R, Saha AK, et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 2008;7:389–399.
  • Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat Neurosci. 2005;8:579–584.
  • Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–1091.
  • Karmi A, Iozzo P, Viljanen A, et al. Increased brain fatty acid uptake in metabolic syndrome. Diabetes. 2010;59:2171–2177.
  • Bachmann OP, Dahl DB, Brechtel K, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001;50:2579–2584.
  • Schenk S, Horowitz JF. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007;117:1690–1698.
  • Martins AR, Nachbar RT, Gorjao R, et al. Mechanisms underlying skeletal muscle insulin resistance induced by fatty acids: importance of the mitochondrial function. Lipids Health Dis. 2012;11:30.
  • Martínez de Morentin PB, González CR, López M. AMP-activated protein kinase: ‘a cup of tea’ against cholesterol-induced neurotoxicity. J Pathol. 2010;222:329–334.
  • Karczewska-Kupczewska M, Kowal ska I, N ikolaj uk A, et al. Circulating brain-derived neurotrophic factor concentration is downregulated by intralipid/heparin infusion or high-fat meal in young healthy male subjects. Diabetes Care. 2012;35:358–362.
  • Montine TJ, Morrow JD. Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am J Pathol. 2005;166:1283–1289.
  • Holloway CJ, Cochlin LE, Emmanuel Y, et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. Am J Clin Nutr. 2011;93:748–755.
  • Charradi K, Elkahoui S, Karkouch I, Limam F, Hassine FB, Aouani E. Grape seed and skin extract prevents high-fat diet-induced brain lipo-toxicity in rat. Neurochem Res. Epub June 9, 2012.
  • Park HR, Park M, Choi J, Park KY, Chung HY, Lee J. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett. 2010;482:235–239.
  • Rodríguez JJ, Jones VC, Tabuchi M, et al. Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer’s disease. PLoS One. 2008;3:e2935.
  • Fazeli SA. Neuroprotection in diabetic encephalopathy. Neurodegener Dis. 2009;6:213–218.
  • Scherer T, O’Hare J, Diggs-Andrews K, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183–194.
  • Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412.
  • Saxena AK, Srivastava P, Kale RK, Baquer NZ. Impaired antioxidant status in diabetic rat liver. Effect of vanadate. Biochem Pharmacol. 1993;45(3):539–542.
  • Ceriello A. Oxidative stress and glycemic regulation. Metabolism. 2000;49:27–29.
  • Moreira PI, Santos MS, Oliveira CR, et al. Alzheimer disease and the role of free radicals in the pathogenesis of the disease. CNS Neurol Disord Drug Targets. 2008;7:3–10.
  • Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res. 2004;5:525–532.
  • Smith CD, Carney JM, Starke-Reed PE, et al. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A. 1991;88:10540–10543.
  • Sohal RS. Role of oxidative stress and protein oxidation in the aging process. Free Radic Biol Med. 2002;33:37–44.
  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329:23–38.
  • Kyriakis JM, Avruch J. Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996;271:24313–24316.
  • Paz K, Hemi R, Le Roith D, et al. A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997;272:29911–29918.
  • Qiao LY, Goldberg JL, Russell JC, Sun XJ. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem. 1999;274:10625–10632.
  • Chong ZZ, Kang JQ, Maiese K. Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. Br J Pharmacol. 2003;138:1107–1118.
  • Kang JQ, Chong ZZ, Maiese K. Akt1 protects against inflammatory microglial activation through maintenance of membrane asymmetry and modulation of cysteine protease activity. J Neurosci Res. 2003;74:37–51.
  • Martin D, Salinas M, Lopez-Valdaliso R, Serrano E, Recuero M, Cuadrado A. Effect of the Alzheimer amyloid fragment Abeta (25–35) on Akt/PKB kinase and survival of PC12 cells. J Neurochem. 2001;78:1000–1008.
  • Hoyer S, Lee SK, Loffler T, Schliebs R. Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y AcadSci. 2009;920:256–258.
  • Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection. J Alzheimers Dis. 2003;5:209–228.
  • Sima AA. Encephalopathies: the emerging diabetic complications. Acta Diabetol. 2010;47:279–293.
  • Miles WR, Root HF. Psychologic tests applied in diabetic patients. Arch Intern Med. 1922;30:767–777.
  • Strachan M, Deary I, Ewing F, Frier B. Is type II diabetes associated with an increased risk of cognitive dysfunction? A critical review of published studies. Diabetes Care. 1997;20:438–445.
  • Biessels G, van der Heide L, Kamal A, Bleys R, Gispen W Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002;441:1–14.
  • Winocur G, Greenwoond C, Piroli G, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119:1389–1395.
  • Reijmer Y, van den Berg E, Ruis C, Kappelle L, Biessels G. Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab Res Rev. 2010;26:507–519.
  • Hayashi K, Kurioka S, Yamaguchi T, et al. Association of cognitive dysfunction with hippocampal atrophy in elderly Japanese patients with type 2 diabetes. Diab Res Clin Pract. 2011;94:180–185.
  • Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26:1044–1080.
  • Ang SL. Foxa1 and Foxa2 transcription factors regulate differentiation of midbrain dopaminergic neurons. Adv Exp Med Biol. 2009;651:58–65.
  • Anarkooli I, Sankian M, Ahmadpour S, Varasteh A, Haghir H. Evaluation of Bcl-2 family gene expression and caspase-3 activity in hippocampus STZ-induced diabetic rats. Exp Diabetes Res. 2008;2008: 638467.
  • Braak H, Braak E, Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33:403–408.
  • Mattson MP Pathways towards and away from Alzheimer’s disease. Nature. 2004;430:631–639.
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297:353–356.
  • Glabe CG. Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging. 2006;27:570–575.
  • Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer’s disease: molecular links and clinical implications. Curr Alzheimer Res. 2008;5:438–447.
  • Farris W, Mansourian S, Chang Y, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100:4162–4167.
  • Li L, Hölscher C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev. 2007;56:384–402.
  • Kroner Z. The relationship between Alzheimer’s disease and diabetes: type 3 diabetes? Altern Med Rev. 2009;14:373–379.
  • Leibson CL, Rocca WA, Hanson VA, et al. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann N Y Acad Sci. 1997;826:422–427.
  • Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6:399–409.
  • Dinel AL, André C, Aubert A, Ferreira G, Layé S, Castanon N. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One. 2011;6:e24325.
  • Leonard BE, Myint A-M. Inflammation and depression: is there a causal connection with dementia? Neurotox Res. 2006;10:149–160.
  • Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med. 2001;125:510–512.
  • Tarkowski E, Blennow K, Wallin A, Tarkowski A. Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia. J Clin Immunol. 1999;19:223–230.
  • Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164:1484–1495.
  • Barnes PJ, Karin M. Nuclear factor-KB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–1071.
  • Bhat NR. Linking cardiometabolic disorders to sporadic AD: a perspective on potential mechanisms and mediators. J Neurochem. 2010;115:551–562.
  • Whitehead JP. Diabetes: new conductors for the peroxisome proliferator-activated receptor y (PPARy) orchestra. Int J Biochem Cell Biol. 2011;43:1071–1074.
  • Pipatpiboon N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. PPARY agonist improves neuronal insulin receptor function in hippocampus and brain mitochondria function in rats with insulin resistance induced by long term high-fat diets. Endocrinology. 2012;153:329–338.
  • Watson GS, Craft S. Insulin resistance, inflammation, and cognition in Alzheimer’s disease: lessons for multiple sclerosis. J Neurol Sci. 2006;245:21–33.
  • Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated pro-inflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci. 2000;20:558–567.
  • Sastre M, Dewachter I, Landreth GE, et al. Nonsteroidal antiinflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci. 2003;23:9796–9804.
  • Yoon SY, Park JS, Choi JE, et al. Rosiglitazone reduces tau phosphorylation via JNK inhibition in the hippocampus of rats with type 2 diabetes and tau transfected SH-SY5Y cells. Neurobiol Dis. 2010;40:449–455.
  • Sagi SA, Weggen S, Eriksen J, Golde TE, Koo EH. The non-cycloox-ygenase targets of non-steroidal anti-inflammatory drugs, lipoxygenases, peroxisome proliferator-activated receptor, inhibitor of kappa B kinase, and NF kappa B, do not reduce amyloid beta 42 production. J Biol Chem. 2003;278:31825–31830.
  • Hölscher C. The role of GLP-1 in neuronal activity and neurodegeneration. Vitam Horm. 2010;84:331–354.
  • Ramirez SH, Fan S, Zhang M, et al. Inhibition of glycogen synthase kinase 3ß (GSK3ß) decreases inflammatory responses in brain endothelial cells. Am J Pathol. 2010;176:881–892.
  • Balaraman Y, Limaye AR, Levey AI, Srinivasan S. Glycogen synthase kinase 3beta and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci. 2006;63:1226–1235.
  • Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3ß: a bifunctional role in cell death pathways. Int J Cell Biol. 2012;2012:930710.
  • Schmidt RE, Dorsey DA, Beaudet LN, Peterson RG. Analysis of the Zucker diabetic fatty (ZDF) type 2 diabetic rat model suggests a neurotrophic role for insulin/IGF-I in diabetic autonomic neuropathy. Am J Pathol. 2003;163:21–28.
  • Bélanger A, Lavoie N, Trudeauc F, Massicotte G, Gagnona S. Preserved LTP and water maze learning in hyperglycaemic-hyperinsulinemic ZDF rats. PhysiolBehav. 2004;83:483–494.
  • Krogh-Madsen R, Plomgaard P, Keller P, Keller C, Pedersen BK. Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am J Physiol Endocrinol Metab. 2004;286:E234–E238.
  • Bender K, Newsholme P, Brennan L, Maechler P. The importance of redox shuttles to pancreatic β-cell energy metabolism and function. Biochem Soc Trans. 2006;34:811–814.
  • Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 2007;30:464–472.