421
Views
110
CrossRef citations to date
0
Altmetric
Original Research

Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)

, , , , &
Pages 2647-2663 | Published online: 03 May 2018

References

  • GoffeauADrug resistance: the fight against fungiNature2008452718754154218385723
  • KimKJSungWSSuhBKAntifungal activity and mode of action of silver nano-particles on Candida albicansBiometals200922223524218769871
  • KanafaniZAPerfectJRResistance to antifungal agents: mechanisms and clinical impactClin Infect Dis200846112012818171227
  • SardiJCOScorzoniLBernardiTFusco-AlmeidaAMMendes GianniniMJSCandida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic optionsJ Med Microbiol2013621102423180477
  • OraschCMarchettiOGarbinoJCandida species distribution and antifungal susceptibility testing according to European Committee on Antimicrobial Susceptibility Testing and new vs. old Clinical and Laboratory Standards Institute clinical breakpoints: a 6-year prospective candidaemia survey from the fungal infection network of SwitzerlandClin Microbiol Infect201420769870524188136
  • PerlinDSEchinocandin resistance in CandidaClin Infect Dis201561Suppl 6S612S61726567278
  • PrasadTSethumadhavanSFatimaZAltered ergosterol biosynthetic pathway – an alternate multidrug resistance mechanism independent of drug efflux pump in human pathogenic fungi C. albicansMéndez-VilasAScience Against Microbial Pathogens: Communicating Current Research and Technological AdvancesSpainFormatex Research Center2011757768
  • HirakawaMPMartinezDASakthikumarSGenetic and phenotypic intra-species variation in Candida albicansGenome Res201525341342525504520
  • PerlinDSShorEZhaoYUpdate on antifungal drug resistanceCurr Clin Microbiol Reports2015228495
  • BrownGDDenningDWLevitzSMTackling human fungal infectionsScience2012336608264722582229
  • PfallerMADiekemaDJProcopGWRinaldiMGMulticenter comparison of the VITEK 2 antifungal susceptibility test with the CLSI broth microdilution reference method for testing amphotericin B, flucytosine and voriconazole against Candida sppJ Clin Microbiol200745113522352817913927
  • LiuSHouYChenXGaoYLiHSunSCombination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discoveryInt J Antimicrob Agents201443539540224503221
  • KumamotoCAPierceJVImmunosensing during colonization by Candida albicans: does it take a village to colonize the intestine?Trends Microbiol201119626326721354799
  • MayerFLWilsonDHubeBCandida albicans pathogenicity mechanismsVirulence20134211912823302789
  • SilvaSNegriMHenriquesMOliveiraRWilliamsDWAzeredoJCandida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistanceFEMS Microbiol Rev201236228830521569057
  • SinghRWaghPWadhwaniSSynthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibioticsInt J Nanomedicine201384277429024235826
  • HsuehYLinKKeWThe antimicrobial properties of silver nanoparticles in Bacillus subtilis are mediated by released Ag+ ionsPLoS One20151012117
  • SalemWLeitnerDRZinglFGAntibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coliInt J Med Microbiol20153051859525466205
  • MohamedMMFouadSAElshokyHAMohammedGMSalaheldinTAAntibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosisInt J Vet Sci Med2017512329
  • SirelkhatimAMahmudSSeeniAReview on zinc oxide nano-particles: antibacterial activity and toxicity mechanismNano-Micro Lett201573219242
  • ArakhaMPalSSamantarraiDAntimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interfaceSci Rep2015514813112
  • KubackaASuarezDMRojoDUnderstanding the antimicrobial mechanism of TiO2 based nanocomposite films in a pathogenic bacteriumSci Rep20144413419
  • LiPGaoYSunZChangDGaoGDongASynthesis, characterization, and bactericidal evaluation of chitosan/guanidine functionalized graphene oxide compositesMolecules20172212115
  • KonwarAKalitaSKotokyJChowdhuryDChitosan-iron oxide coated graphene oxide nanocomposite hydrogel: a robust and soft antimicrobial biofilmACS Appl Mater Interfaces2016832206252063427438339
  • NelAEMädlerLVelegolDUnderstanding biophysicochemical interactions at the nano–bio interfaceNat Mater20098754355719525947
  • GeLLiQWangMOuyangJLiXXingMMQNanosilver particles in medical applications: synthesis, performance, and toxicityInt J Nanomedicine2014912399240724876773
  • MaoBHTsaiJCChenCWYanSJWangYJMechanisms of silver nanoparticle-induced toxicity and important role of autophagyNanotoxicology20161081021104027240148
  • MelaiyeAYoungsWJSilver and its application as an antimicrobial agentExpert Opin Ther Pat2005152125130
  • RadhakrishnanVSDwivediSPSiddiquiMHPrasadTIn vitro studies on oxidative stress-independent, Ag nanoparticles-induced cell toxicity of Candida albicans, an opportunistic pathogenInt J Nanomedicine201813919629593404
  • HwangISLeeJHwangJHKimKJLeeDGSilver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicalsFEBS J201227971327133822324978
  • Vazquez-MuñozRAvalos-BorjaMCastro-LongoriaEUltrastructural analysis of Candida albicans when exposed to silver nanoparticlesPLoS One2014910110
  • FonziWAIrwinMYIsogenic strain construction and gene mapping in Candida albicansGenetics199313437177288349105
  • PalSTakYKSongJMDoes the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coliAppl Environ Microbiol20077361712172017261510
  • KalimuthuKSuresh BabuRVenkataramanDBilalMGurunathanSBiosynthesis of silver nanocrystals by Bacillus licheniformisColloids Surf B Biointerfaces200865115015318406112
  • MurdockRCBraydich-StolleLSchrandAMSchlagerJJHussainSMCharacterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering techniqueToxicol Sci2008101223925317872897
  • PrasadTChandraAMukhopadhyayCKPrasadRUnexpected link between iron and drug resistance of Candida spp: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cellsAntimicrob Agents Chemother200650113597360616954314
  • RexJHAlexanderBDAndesDReference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard – Third Edition28Pennsylvania, USAClinical and Laboratory Standards Institute (CLSI)2008
  • MukhopadhyayKPrasadTSainiPPuoadyilTJChattopadhyayAPrasadRMembrane sphingolipid–ergosterol interactions are important determinants of multidrug resistance in Candida albicansAntimicrob Agents Chemother20044851778178715105135
  • PrasadTHameedSManoharlalRMorphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicansFEMS Yeast Res201010558759620491944
  • ShinitzkyMBarenholzYFluidity parameters of lipid regions determined by fluorescence polarizationBiochim Biophys Acta19785154367394365237
  • VermaSDPalNSinghMKSenSProbe position-dependent counterion dynamics in DNA: comparison of time-resolved Stokes shift of groove-bound to base-stacked probes in the presence of different monovalent counterionsJ Phys Chem Lett20123182621262626295881
  • AbeFHirakiTMechanistic role of ergosterol in membrane rigidity and cycloheximide resistance in Saccharomyces cerevisiaeBiochim Biophys Acta20091788374375219118519
  • MartelCMParkerJEBaderOA clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin BAntimicrob Agents Chemother20105493578358320547793
  • BlighEGDyerWJA rapid method of total lipid extraction and purificationCan J Biochem Physiol195937891191713671378
  • StubbsCDSmithADThe modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and functionBiochim Biophys Acta19847791891376229284
  • WalkerLAMunroCADe BruijnILenardonMDMcKinnonAGowNARStimulation of chitin synthesis rescues Candida albicans from echinocandinsPLoS Pathog200844e100004018389063
  • ChengLCJiangXWangJChenCLiuRSNano-bio effects: interaction of nanomaterials with cellsNanoscale2013593547356923532468
  • LinkSEl-SayedMAOptical properties and ultrafast dynamics of metallic nanoparticlesAnnu Rev Phys Chem200354133136612626731
  • MieGContributions to the optics of turbid media, especially colloidal metal solutionsAnn Phys19083303377445
  • FranciGFalangaAGaldieroSSilver nanoparticles as potential antibacterial agentsMolecules20152058856887425993417
  • YouCHanCWangXThe progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicityMol Biol Rep20123999193920122722996
  • SinghPKimYJSinghHBiosynthesis, characterization, and antimicrobial applications of silver nanoparticlesInt J Nanomedicine2015102567257725848272
  • PanáčekAKolářMVečeřováRAntifungal activity of silver nanoparticles against Candida sppBiomaterials200930316333634019698988
  • MoronesJRElechiguerraJLCamachoAThe bactericidal effect of silver nanoparticlesNanotechnology200516102346235320818017
  • KobayashiDKondoKUeharaNEndogenous reactive oxygen species is an important mediator of miconazole antifungal effectAntimicrob Agents Chemother200246103113311712234832
  • SwathyJRSankarMUChaudharyAAigalSAnshupPradeepTAntimicrobial silver: an unprecedented anion effectSci Rep20144716125418185
  • SelvarajMPanduranganPRamasamiNRajendranSBSangilimuthuSNPerumalPHighly potential antifungal activity of quantum-sized silver nanoparticles against Candida albicansAppl Biochem Biotechnol20141731556624648138
  • WadyAFMachadoALZucolottoVZamperiniCABerniEVerganiCEEvaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticlesJ Appl Microbiol201211261163117222452416
  • MonteiroDRTakamiyaASFeresinLPSusceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phasesJ Prosthodont Res2015591424825168655
  • LaraHHRomero-UrbinaDGPierceCLopez-RibotJLArellano-JiménezMJJose-YacamanMEffect of silver nanoparticles on Candida albicans biofilms: an ultrastructural studyJ Nanobiotechnology2015139111225592092
  • ChaffinWLLópez-RibotJLCasanovaMGozalboDMartínezJPCell wall and secreted proteins of Candida albicans: identification, function, and expressionMicrobiol Mol Biol Rev19986211301809529890
  • PrasadTSainiPGaurNAVishwakarmaRAKhanLAHaqQMRFunctional analysis of CaIPT1, a sphingolipid biosynthetic gene involved in multidrug resistance and morphogenesis of Candida albicansAntimicrob Agents Chemother20054983442345216048959
  • KumarARadhakrishnanVSSinghRKumarMMishraNNPrasadTA clinical resistant isolate of opportunistic fungal pathogen, Candida albicans revealed more rigid membrane than its isogenic sensitive isolateMendiz-VilasAMultidisciplinary Approaches for Studying and Combating Microbial PathogensFlorida, USABrown Walker Press201515
  • LavieYFiucciGLiscovitchMUp-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cellsJ Biol Chem19982734932380323839829965
  • LavieYLiscovitchMChanges in lipid and protein constituents of rafts and caveolae in multidrug resistant cancer cells and their functional consequencesGlycoconj J2000173–425325911201798
  • KachrooPShanklinJShahJWhittleEJKlessigDFA fatty acid desaturase modulates the activation of defense signaling pathways in plantsProc Natl Acad Sci U S A200198169448945311481500
  • LeachMDCowenLEMembrane fluidity and temperature sensing are coupled via circuitry comprised of Ole1, Rsp5, and Hsf1 in Candida albicansEukaryot Cell20141381077108424951438
  • KrishnamurthySPlaineAAlbertJPrasadTPrasadRErnstJFDosage-dependent functions of fatty acid desaturase Ole1p in growth and morphogenesis of Candida albicansMicrobiology2004150Pt 61991200315184585
  • DouglasLCandida biofilms and their role in infectionTrends Microbiol2003111303612526852
  • RamageGVandeWalleKLopez-RibotJWickesBThe filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicansFEMS Microbiol Lett200221419510012204378
  • ShareckJBelhumeurPModulation of morphogenesis in Candida albicans by various small moleculesEukaryot Cell20111081004101221642508
  • HeathRJWhiteSWRockCOInhibitors of fatty acid synthesis as antimicrobial chemotherapeuticsAppl Microbiol Biotechnol200258669570312021787
  • MaseetMKhanNBasirSFErgosterol biosynthesis and pathogenicity markers inhibition of Candida albicans by fungus mediated silver nanoparticlesWorld J Pharm Pharm Sci201762600618