105
Views
26
CrossRef citations to date
0
Altmetric
Original Research

Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells

, , , &
Pages 4771-4779 | Published online: 23 Aug 2018

References

  • DumontetCJordanMAMicrotubule-binding agents: a dynamic field of cancer therapeuticsNat Rev Drug Discov201091079080320885410
  • JordanMAWilsonLMicrotubules as a target for anticancer drugsNat Rev Cancer20044425326515057285
  • BonneterreJSpielmanMGuastallaJPEfficacy and safety of docetaxel (Taxotere) in heavily pretreated advanced breast cancer patients: the French compassionate use programme experienceEur J Cancer199935101431143910673974
  • CrownJO’LearyMOoiWSDocetaxel and paclitaxel in the treatment of breast cancer: a review of clinical experienceOncologist20049Suppl 2243215161988
  • BritoDARiederCLMitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpointCurr Biol200616121194120016782009
  • GiovinazziSBellapuDMorozovVMIshovAMTargeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacyCell Cycle201312162598260723907120
  • LindsayCRScholzAMorozovVMIshovAMDaxx shortens mitotic arrest caused by paclitaxelCell Cycle20076101200120417471023
  • SchnerchDFolloMKrohsJFelthausJEngelhardtMWäschRMonitoring APC/C activity in the presence of chromosomal misalignment in unperturbed cell populationsCell Cycle201211231032122214763
  • McGroganBTGilmartinBCarneyDNMcCannATaxanes, Microtu-bules and Chemoresistant Breast CancerBiochim Biophys Acta2008178529613218068131
  • EskanderRNCripeJBristowREIntraperitoneal chemotherapy from Armstrong to HIPEC: challenges and promiseCurr Treat Options Oncol2014151274024338278
  • HelmCWCurrentStatus and Future Directions of Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy in the Treatment of Ovarian CancerSurg Oncol Clin N Am201221464566323021722
  • MulierSClaesJPDierieckVSurvival benefit of adding Hyper-thermic IntraPEritoneal Chemotherapy (HIPEC) at the different time-points of treatment of ovarian cancer: review of evidenceCurr Pharm Des201218253793380322591422
  • OyeniyiJWuJLiuDTreatment of carcinomatosis using cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in adolescents and young adultsAm J Surg2015209461061525746912
  • DhavalikarRRinaldiCTheoretical Predictions for Spatially-Focused Heating of Magnetic Nanoparticles Guided by Magnetic Particle Imaging Field GradientsJ Magn Magn Mater201641926727328943706
  • HensleyDTayZWDhavalikarRCombining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platformPhys Med Biol20176293483350028032621
  • LaurentSDutzSHäfeliUOMahmoudiMMagnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticlesAdv Colloid Interface Sci20111661–282321601820
  • JordanAScholzRWustPFählingHFelixRolandRolandFMagnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticlesJ Magn Magn Mater19992011–3413419
  • Maier-HauffKUlrichFNestlerDEfficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiformeJ Neurooncol2011103231732420845061
  • ThiesenBJordanAClinical applications of magnetic nanoparticles for hyperthermiaInt J Hyperthermia200824646747418608593
  • BarreraCHerreraAPBezaresNEffect of poly(ethylene oxide)-silane graft molecular weight on the colloidal properties of iron oxide nanoparticles for biomedical applicationsJ Colloid Interface Sci20123771405022513169
  • BarreraCHerreraAPRinaldiCColloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol)J Colloid Interface Sci2009329110711318930466
  • CreixellMHerreraAPLatorre-EstevesMAyalaVTorres-LugoMRinaldiCThe effect of grafting method on the colloidal stability and in vitro cytotoxicity of carboxymethyl dextran coated magnetic nano-particlesJ Mater Chem2010203985398547
  • MéridaFChiu-LamABohórquezACOptimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation ratesJ Magn Magn Mater201539436137126273124
  • UnniMUhlAMSavliwalaSThermal Decomposition Synthesis of Iron Oxide Nanoparticles with Diminished Magnetic Dead Layer by Controlled Addition of OxygenACS Nano20171122284230328178419
  • WahajuddinAroraSSuperparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriersInt J Nanomedicine201273445347122848170
  • CreixellMBohórquezACTorres-LugoMRinaldiCEGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature riseACS Nano2011597124712921838221
  • DomenechMMarrero-BerriosITorres-LugoMRinaldiCLysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fieldsACS Nano2013765091510123705969
  • JordanAScholzRMaier-HauffKPresentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermiaJ Magn Magn Mater20012251–2118126
  • Alvarez-BerriosMPCastilloAMéridaFMendezJRinaldiCTorres-LugoMEnhanced proteotoxic stress: one of the contributors for hyperthermic potentiation of the proteasome inhibitor bortezomib using magnetic nanoparticlesBiomater Sci20153239140026218130
  • Alvarez-BerríosMPCastilloARinaldiCTorres-LugoMMagnetic fluid hyperthermia enhances cytotoxicity of bortezomib in sensitive and resistant cancer cell linesInt J Nanomedicine20149145153
  • LeeJSRodríguez-LuccioniHLMéndezJHyperthermia induced by magnetic nanoparticles improves the effectiveness of the anticancer drug cis-diamminedichloroplatinumJ Nanosci Nanotechnol20111154153415721780419
  • Torres-LugoMRinaldiCThermal potentiation of chemotherapy by magnetic nanoparticlesNanomedicine (Lond)20138101689170724074390
  • HembruffSLLabergeMLVilleneuveDJRole of drug transporters and drug accumulation in the temporal acquisition of drug resistanceBMC Cancer2008831818980695
  • Maldonado-CamargoLTorres-DíazIChiu-LamAHernándezMRinaldiCEstimating the contribution of Brownian and Néel relaxation in a magnetic fluid through dynamic magnetic susceptibility measurementsJ Magn Magn Mater2016412223233
  • FortinJPGazeauFWilhelmCIntracellular heating of living cells through Néel relaxation of magnetic nanoparticlesEur Biophys J200837222322817641885
  • Thadani-MuleroMNanusDMGiannakakouPAndrogen receptor on the move: boarding the microtubule expressway to the nucleusCancer Res201272184611461522987486
  • MusacchioASalmonEDThe spindle-assembly checkpoint in space and timeNat Rev Mol Cell Biol20078537939317426725
  • MantelCGuoYLeeMRCells enter a unique intermediate 4N stage, not 4N-G1, after aborted mitosisCell Cycle20087448449218235235
  • ErenpreisaJEIvanovADekenaGArrest in metaphase and anatomy of mitotic catastrophe: mild heat shock in two human osteosarcoma cell linesCell Biol Int2000242617010772764
  • RoninsonIBBroudeEVChangB-DIf not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cellsDrug Resistance Updates20014530331311991684
  • VakifahmetogluHOlssonMZhivotovskyBDeath through a tragedy: mitotic catastropheCell Death Differ20081571153116218404154
  • JanssenAMedemaRHMitosis as an anti-cancer targetOncogene201130252799280921339734
  • van der ZeeJHeating the patient: a promising approach?Ann Oncol20021381173118412181239
  • KozissnikBBohorquezACDobsonJRinaldiCMagnetic fluid hyperthermia: advances, challenges, and opportunityInt J Hyperthermia201329870671424106927
  • TasciTOVargelIAratAGuzelEKorkusuzPAtalarEFocused RF hyperthermia using magnetic fluidsMed Phys20093651906191219544810
  • WeaverBAHow Taxol/paclitaxel kills cancer cellsMol Biol Cell201425182677268125213191