340
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Grafting of multiwalled carbon nanotubes with pyrazole derivatives: characterization, antimicrobial activity and molecular docking study

, &
Pages 6645-6659 | Published online: 20 Aug 2019

References

  • Ajayan PM, Charlier J-C, Rinzler AG. Carbon nanotubes: from macromolecules to nanotechnology. Proc Natl Acad Sci USA. 1999;96(25):14199–14200. doi:10.1073/pnas.96.25.1419910588679
  • Lam C-W, James JT, McCluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol. 2006;36(3):189–217. doi:10.1080/1040844060057023316686422
  • Baughman RH, Zakhidov AA, Wa DH. Carbon nanotubes–the route toward applications. Science. 2002;297(5582):787–792. doi:10.1126/science.106092812161643
  • Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004;14(4):527–541. doi:10.1039/b314481j
  • Kang S, Pinault M, Pfefferle LD, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 2007;23(17):8670–8673. doi:10.1021/la701067r17658863
  • Kang S, Mauter MS, Elimelech M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol. 2008;42(19):7528–7534. doi:10.1021/es801017318939597
  • Kang S, Herzberg M, Rodrigues DF, Elimelech M. Antibacterial effects of carbon nanotubes. Size Does Matter! Langmuir. 2008;24(13):6409–6413. doi:10.1021/la800951v18512881
  • Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughe JB. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ Toxicol Chem. 2005;24(11):2757–2762. doi:10.1897/04-649R.116398110
  • Fortner JD, Lyon DY, Sayes CM, et al. C60 in water: nanocrystal formation and microbial response. Environ Sci Technol. 2005;39(11):4307–4316. doi:10.1021/es048099n15984814
  • Klaine SJ, Alvarez PJJ, Batley GE, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem. 2008;27(9):1825–1851. doi:10.1897/08-090.119086204
  • Li Q, Mahendra S, Lyon DY, et al. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 2008;42(18):4591–4602. doi:10.1016/j.watres.2008.08.01518804836
  • Kang Y, Liu Y-C, Wang Q, Shen J-W, Wu T, Guan W-J. On the spontaneous encapsulation of proteins in carbon nanotubes. Biomaterials. 2009;30(14):2807–2815. doi:10.1016/j.biomaterials.2009.01.02419200595
  • Sayes CM, Liang F, Hudson JL, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett. 2006;161(2):135–142. doi:10.1016/j.toxlet.2005.08.01116229976
  • Strano MS, Dyke CA, Usrey ML, et al. Electronic structure control of single-walled carbon nanotube functionalization. Science. 2003;301(5639):1519–1522. doi:10.1126/science.108769112970561
  • Sun Y-P, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002;35(12):1096–1104. doi:10.1021/ar010160v12484798
  • Men X-H, Zhang -Z-Z, Yang J, Wang K, Jiang W. Superhydrophobic/superhydrophilic surfaces from a carbon nanotube based composite coating. Appl Phys A. 2010;98(2):275. doi:10.1007/s00339-009-5425-6
  • Zanzan Z, Zhe W, Hulin L. Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Appl Surf Sci. 2008;254(10):2934–2940. doi:10.1016/j.apsusc.2007.10.033
  • Castro MRS, Lasagni AF, Schmidt HK, Mücklich F. Direct laser interference patterning of multi-walled carbon nanotube-based transparent conductive coatings. Appl Surf Sci. 2008;254(18):5874–5878. doi:10.1016/j.apsusc.2008.03.140
  • Chen J, Rao AM, Lyuksyutov S, et al. Dissolution of full-length single-walled carbon nanotubes. J Phys Chem B. 2001;105(13):2525–2528. doi:10.1021/jp002596i
  • O’Connell MJ, Boul P, Ericson LM, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett. 2001;342(3):265–271. doi:10.1016/S0009-2614(01)00490-0
  • Chattopadhyay D, Lastella S, Kim S, Papadimitrakopoulos F. Length separation of Zwitterion-functionalized single wall carbon nanotubes by GPC. J Am Chem Soc. 2002;124(5):728–729. doi:10.1021/ja017215911817929
  • Chattopadhyay D, Galeska I, Papadimitrakopoulos F. A route for Bulk separation of semiconducting from metallic single-wall carbon nanotubes. J Am Chem Soc. 2003;125(11):3370–3375. doi:10.1021/ja026313712630892
  • Lordi V, Yao N, Wei J. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst. Chem Mater. 2001;13(3):733–737. doi:10.1021/cm000210a
  • Salavati-Niasari M, Bazarganipour M. Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. Appl Surf Sci. 2008;255(5):2963–2970. doi:10.1016/j.apsusc.2008.08.100
  • Huang W, Taylor S, Fu K, et al. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2002;2(4):311–314. doi:10.1021/nl010095i
  • Wu Z, Feng W, Feng Y, et al. Preparation and characterization of chitosan-grafted multiwalled carbon nanotubes and their electrochemical properties. Carbon. 2007;45(6):1212–1218. doi:10.1016/j.carbon.2007.02.013
  • Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M. Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B Biointerfaces. 2012;92:196–202. doi:10.1016/j.colsurfb.2011.11.04522197225
  • Shi B, Zhuang X, Yan X, Lu J, Tang H. Adsorption of atrazine by natural organic matter and surfactant dispersed carbon nanotubes. J Environ Sci. 2010;22(8):1195–1202. doi:10.1016/S1001-0742(09)60238-2
  • Pagona G, Tagmatarchis N. Carbon nanotubes: materials for medicinal chemistry and biotechnological applications. Curr Med Chem. 2006;13(15):1789–1798. doi:10.2174/09298670677745252416787221
  • Bai Y, Park IS, Lee SJ, et al. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon. 2011;49(11):3663–3671. doi:10.1016/j.carbon.2011.05.002
  • Azizian J, Hekmati M, Dadras OG. Functionalization of carboxylated multiwall nanotubes with dapsone derivatives and study of their antibacterial activities against E.coli and S. aureus. Orient J Chem. 2014;30(2):667–673. doi:10.13005/ojc
  • Zhu Y, Liu X, Yeung KWK, Chu PK, Wu S. Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Appl Surf Sci. 2017;400:14–23. doi:10.1016/j.apsusc.2016.12.158
  • Mocan L, Ilie I, Tabaran FA, et al. Selective laser ablation of methicillin-resistant staphylococcus aureus with IgG functionalized multi-walled carbon nanotubes. J Biomed Nanotechol. 2016;12(4):781–788. doi:10.1166/jbn.2016.2221
  • Wang W, Zhu L, Shan B, et al. Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci. 2018;548:459–469. doi:10.1016/j.memsci.2017.11.046
  • Van Hes R, Wellinga K, Grosscurt AC. 1-Phenylcarbamoyl-2-pyrazolines: a new class of insecticides. 2. Synthesis and insecticidal properties of 3, 5-diphenyl-1-phenylcarbamoyl-2-pyrazolines. J Agric Food Chem. 1978;26(4):915–918. doi:10.1021/jf60218a015
  • Lv H-S, Wang L-Y, Ding X-L, Wang X-H, Zhao B-X ZH. Synthesis and antifungal activity of novel (1-arylmethyl-3-aryl-1H-pyrazol-5-yl)(4-arylpiperazin-1-yl)methanone derivatives. J Chem Res. 2013;37(8):473–475. doi:10.3184/174751913X13734652599909
  • Garg HG, Prakash C. Potential antidiabetics. 9. Biological activity of some pyrazoles. J Med Chem. 1971;14(17):649–650. doi:10.1021/jm00289a0284365201
  • Abd El Razik HA, Badr MH, Atta AH, Mouneir SM, Abu-Serie MM. Benzodioxole-pyrazole hybrids as anti-inflammatory and analgesic agents with COX-1,2/5-LOX inhibition and antioxidant potential. Arch Pharm (Weinheim). 2017;350:5. doi:10.1002/ardp.201700026
  • Kauhanka UM, Kauhanka MM. New metallomesogens with enaminoketonato ligands. Liq Cryst. 2006;33(2):213–218. doi:10.1080/02678290500429638
  • Gao X-C, Cao H, Zhang L-Q, Zhang B-W, Cao Y, Huang C-H. Properties of a new pyrazoline derivative and its application in electroluminescence. J Mater Chem. 1999;9(5):1077–1080. doi:10.1039/a900276f
  • Tu X-J, Hao W-J, Ye Q, et al. Four-component bicyclization approaches to skeletally diverse pyrazolo[3,4-b]pyridine derivatives. J Org Chem. 2014;79(22):11110–11118. doi:10.1021/jo502096t25338160
  • Molteni G, Buttero PD. A bicyclo[3.1.1]heptano[4,3-c]pyrazole derived chiral auxiliary for dipolar cycloadditions. Tetrahedron Asymmetry. 2005;16(11):1983–1987. doi:10.1016/j.tetasy.2005.04.014
  • Singh P, Paul K, Holzer W. Synthesis of pyrazole-based hybrid molecules: search for potent multidrug resistance modulators. Bioorg Med Chem. 2006;14(14):5061–5071. doi:10.1016/j.bmc.2006.02.04616554161
  • Liu X-H, Weng J-Q, Wang B-L, Li Y-H, Tan C-X, Li Z-M. Microwave-assisted synthesis of novel fluorinated 1,2,4-triazole derivatives, and study of their biological activity. Res Chem Intermed. 2014;40(8):2605–2612. doi:10.1007/s11164-013-1113-4
  • Jian-Quan W, Xing-Hai L, Guo-Tong T. Synthesis and herbicidal activity of amide derivatives containing thiazole moiety. Asian J Chem. 2013;25(4):2149–2152. doi:10.14233/ajchem.2013.13366
  • Antoszczak M, Maj E, Napiórkowska A, et al. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides. Molecules. 2014;19(12):19435–19459. doi:10.3390/molecules19081121125429565
  • Yan S-L, Yang M-Y, Sun Z-H, et al. Synthesis and antifungal activity of 1,2,3-thiadiazole derivatives containing 1,3,4-thiadiazole moiety [Internet]. Lett Drug Des Discov. 2014 [cited 2018]. Available from: http://www.eurekaselect.com/121773/article. doi:10.2174/1570180811666140423222141
  • Bearne SL, Blouin C. Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis. J Biol Chem. 2000;275(1):135–140. doi:10.1074/jbc.275.1.13510617596
  • Elnagdi MH, Sallam MMM, Fahmy HM, Ibrahim SA-M, Elias MAM. Reactions with the arylhydrazones of α-cyanoketones: the structure of 2-arylhydrazono-3-ketimino-nitriles. Helv Chim Acta. 1976;59(2):551–557. doi:10.1002/hlca.19760590220
  • Elnagdi MH, Allah SOA. Reactions with the arylhydrazones of some α-cyanoketones. J Für Prakt Chem. 1973;315(6):1009–1016. doi:10.1002/prac.19733150604
  • Rajitha G, Prasad KVSRG, Bharathi K. Synthesis and biological evaluation of 3-amino pyrazolones. Asian J Chem. 2011;23(2):684–686.
  • Shokry SA, El Morsi AK, Sabaa MS, Mohamed RR, El Sorogy HE. Synthesis and characterization of polyurethane based on hydroxyl terminated polybutadiene and reinforced by carbon nanotubes. Egypt J Pet. 2015;24(2):145–154. doi:10.1016/j.ejpe.2015.05.008
  • Xiang Y, Liu X, Mao C, et al. Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater Sci Eng C. 2018;85:214–224. doi:10.1016/j.msec.2017.12.034
  • Zhang J, Zou H, Qing Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B. 2003;107(16):3712–3718. doi:10.1021/jp027500u
  • Ellison MD, Gasda PJ. Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction. J Phys Chem C. 2008;112(3):738–740. doi:10.1021/jp076935k
  • Zhao Z, Yang Z, Hu Y, Li J, Fan X. Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci. 2013;276:476–481. doi:10.1016/j.apsusc.2013.03.119
  • Stobinski L, Lesiak B, Kövér L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd. 2010;501(1):77–84. doi:10.1016/j.jallcom.2010.04.032
  • Lee G-W, Kim J, Yoon J, et al. Structural characterization of carboxylated multi-walled carbon nanotubes. Thin Solid Films. 2008;516(17):5781–5784. doi:10.1016/j.tsf.2007.10.071
  • Liu S, Ng AK, Xu R, et al. Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale. 2010;2(12):2744–2750. doi:10.1039/c0nr00441c20877897
  • Ernst WA, Thoma-Uszynski S, Teitelbaum R, et al. Granulysin, a T cell product, kills bacteria by altering membrane permeability. J Immunol Baltim Md 1950. 2000;165(12):7102–7108.
  • Vecitis CD, Zodrow KR, Kang S, Elimelech M. Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes. ACS Nano. 2010;4(9):5471–5479. doi:10.1021/nn101558x20812689
  • Cromartie TH, Fisher KJ, Grossman JN. The discovery of a novel site of action for herbicidal bisphosphonates. Pestic Biochem Physiol. 1999;63(2):114–126. doi:10.1006/pest.1999.2397
  • Martin MB, Arnold W, Heath HT 3rd, Urbina JA, Oldfield E. Nitrogen-containing bisphosphonates as carbocation transition state analogs for isoprenoid biosynthesis. Biochem Biophys Res Commun. 1999;263(3):754–758. doi:10.1006/bbrc.1999.140410512752
  • van Beek ER, Löwik CW, Ebetino FH, Papapoulos SE. Binding and antiresorptive properties of heterocycle-containing bisphosphonate analogs: structure-activity relationships. Bone. 1998;23(5):437–442. doi:10.1016/S8756-3282(98)00120-39823450
  • Keller RK, Fliesler SJ. Mechanism of aminobisphosphonate action: characterization of alendronate inhibition of the isoprenoid pathway. Biochem Biophys Res Commun. 1999;266(2):560–563. doi:10.1006/bbrc.1999.184610600541
  • Bergstrom JD, Bostedor RG, Masarachia PJ, Reszka AA, Rodan G. Alendronate is a specific, nanomolar inhibitor of farnesyl diphosphate synthase. Arch Biochem Biophys. 2000;373(1):231–241. doi:10.1006/abbi.1999.150210620343
  • Grove JE, Brown RJ, Watts DJ. The intracellular target for the antiresorptive aminobisphosphonate drugs in dictyostelium discoideum is the enzyme farnesyl diphosphate synthase. J Bone Miner Res. 2000;15(5):971–981. doi:10.1359/jbmr.2000.15.9.179810804029