114
Views
2
CrossRef citations to date
0
Altmetric
Original Research

BCESA: a nano-scaled intercalator capable of targeting tumor tissue and releasing anti-tumoral β-carboline-3-carboxylic acid

, , , , , & show all
Pages 3027-3041 | Published online: 30 Apr 2019

References

  • Shankaraiah N, Jadala C, Nekkanti S, et al. Design and synthesis of C3-tethered 1,2,3-triazolo-beta-carboline derivatives: anticancer activity, DNA-binding ability, viscosity and molecular modeling studies. Bioorg Chem. 2016;64:42–50. doi:10.1016/j.bioorg.2015.11.00526657602
  • Ling Y, Guo J, Yang Q, et al. Development of novel beta-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. Eur J Med Chem. 2018;144:398–409. doi:10.1016/j.ejmech.2017.12.06129288941
  • Fiore M, Forli S, Manetti F. Targeting Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAPK2, MK2): medicinal chemistry efforts to lead small molecule inhibitors to clinical trials. J Med Chem. 2016;59(8):3609–3634. doi:10.1021/acs.jmedchem.5b0145726502061
  • Suh YG, Lim C, Sim J, Lee JK, Surh YJ, Paek SM. Construction of the azacyclic core of tabernaemontanine-related alkaloids via tandem Reformatsky-Aza-Claisen rearrangement. J Org Chem. 2017;82(3):1464–1470. doi:10.1021/acs.joc.6b0264828051867
  • Kovvuri J, Nagaraju B, Nayak VL, et al. Design, synthesis and biological evaluation of new beta-carboline-bisindole compounds as DNA binding, photocleavage agents and topoisomerase I inhibitors. Eur J Med Chem. 2018;143:1563–1577. doi:10.1016/j.ejmech.2017.10.05429129513
  • Zheng C, Fang Y, Tong W, et al. Synthesis and biological evaluation of novel tetrahydro-beta-carboline derivatives as antitumor growth and metastasis agents through inhibiting the transforming growth factor-beta signaling pathway. J Med Chem. 2014;57(3):600–612. doi:10.1021/jm401117t24417479
  • Shankaraiah N, Nekkanti S, Chudasama KJ, et al. Design, synthesis and anticancer evaluation of tetrahydro-beta-carboline-hydantoin hybrids. Bioorg Med Chem Lett. 2014;24(23):5413–5417. doi:10.1016/j.bmcl.2014.10.03825453799
  • Ling Y, Xu C, Luo L, et al. Novel beta-carboline/hydroxamic acid hybrids targeting both histone deacetylase and DNA display high anticancer activity via regulation of the p53 signaling pathway. J Med Chem. 2015;58(23):9214–9227. doi:10.1021/acs.jmedchem.5b0105226555243
  • Dighe SU, Khan S, Soni I, et al. Synthesis of beta-carboline-based N-heterocyclic carbenes and their antiproliferative and antimetastatic activities against human breast cancer cells. J Med Chem. 2015;58(8):3485–3499. doi:10.1021/acs.jmedchem.5b0001625835200
  • Frederick R, Bruyere C, Vancraeynest C, et al. Novel trisubstituted harmine derivatives with original in vitro anticancer activity. J Med Chem. 2012;55(14):6489–6501. doi:10.1021/jm300542e22770529
  • Dai J, Dan W, Schneider U, Wang J. β-Carboline alkaloid monomers and dimers: occurrence, structural diversity, and biological activities. Eur J Med Chem. 2018;157:622–656. doi:10.1016/j.ejmech.2018.08.02730125723
  • Yang F, Zhang T, Wu H, et al. Design and optimization of novel hydroxamate-based histone deacetylase inhibitors of Bis-substituted aromatic amides bearing potent activities against tumor growth and metastasis. J Med Chem. 2014;57(22):9357–9369. doi:10.1021/jm501214825360834
  • Behforouz M, Cai W, Stocksdale MG, et al. Novel lavendamycin analogues as potent HIV-reverse transcriptase inhibitors: synthesis and evaluation of anti-reverse transcriptase activity of amide and ester analogues of lavendamycin. J Med Chem. 2003;46(26):5773–5780. doi:10.1021/jm030441414667230
  • Sathish M, Chetan Dushantrao S, Nekkanti S, et al. Synthesis of DNA interactive C3-trans-cinnamide linked beta-carboline conjugates as potential cytotoxic and DNA topoisomerase I inhibitors. Bioorg Med Chem. 2018;26(17):4916–4929. doi:10.1016/j.bmc.2018.08.03130172625
  • Chen J, Peng F, Zhang Y, et al. Synthesis, characterization, cellular uptake and apoptosis-inducing properties of two highly cytotoxic cyclometalated ruthenium(II) β-carboline complexes. Eur J Med Chem. 2017;140:104–117. doi:10.1016/j.ejmech.2017.09.00728923379
  • Carvalho A, Chu J, Meinguet C, et al. A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmacol. 2017;805:25–35. doi:10.1016/j.ejphar.2017.03.03428322844
  • Atteya R, Ashour ME, Ibrahim EE, Farag MA, El-Khamisy SF. Chemical screening identifies the beta-Carboline alkaloid harmine to be synergistically lethal with doxorubicin. Mech Ageing Dev. 2017;161(Pt A):141–148. doi:10.1016/j.mad.2016.04.01227282658
  • Samundeeswari S, Chougala B, Holiyachi M, et al. Design and synthesis of novel phenyl −1, 4-beta-carboline-hybrid molecules as potential anticancer agents. Eur J Med Chem. 2017;128:123–139. doi:10.1016/j.ejmech.2017.01.01428171832
  • Bai B, Li XY, Liu L, Li Y, Zhu HJ. Syntheses of novel beta-carboline derivatives and the activities against five tumor-cell lines. Bioorg Med Chem Lett. 2014;24(1):96–98. doi:10.1016/j.bmcl.2013.11.07624345445
  • Liew LPP, Fleming JM, Longeon A, et al. Synthesis of 1-indolyl substituted β-carboline natural products and discovery of antimalarial and cytotoxic activities. Tetrahedron. 2014;70(33):4910–4920. doi:10.1016/j.tet.2014.05.068
  • Wu JH, Li CY, Zhao M, Wang WJ, Wang YJ, Peng SQ. A class of novel carboline intercalators: their synthesis, in vitro anti-proliferation, in vivo anti-tumor action, and 3D QSAR analysis. Bioorg Med Chem. 2010;18(17):6220–6229. doi:10.1016/j.bmc.2010.07.04320692841
  • Wu JH, Zhao M, Qian KD, Lee KH, Morris-Natschke S, Peng SQ. Novel N-(3-carboxyl-9-benzyl-beta-carboline-1-yl)ethylamino acids: synthesis, anti-tumor evaluation, intercalating determination, 3D QSAR analysis and docking investigation. Eur J Med Chem. 2009;44(10):4153–4161. doi:10.1016/j.ejmech.2009.05.00619535177
  • Wu JH, Wei L, Zhao M, Wang YJ, Kang GF, Peng SQ. N-[2(3-Carboxyl-9-benzyl-carboline-1-yl)ethyl-1-yl]-amino acids: correlation of spectral property with in vivo anti-tumor activity. Med Chem Res. 2012;21(1):116–123. doi:10.1007/s00044-010-9504-1
  • Serfilippi LM, Pallman DR, Russell B. Serum clinical chemistry and hematology reference values in outbred stocks of albino mice from three commonly used vendors and two inbred strains of albino mice. Contemp Top Lab Anim Sci. 2003;42(3):46–52.
  • Zhang XY, Yang YF, Zhao M, et al. A class of Trp-Trp-AA-OBzl: synthesis, in vitro anti-proliferation/in vivo anti-tumor evaluation, intercalation-mechanism investigation and 3D QSAR analysis. Eur J Med Chem. 2011;46(8):3410–3419. doi:10.1016/j.ejmech.2011.05.00421620529
  • Feng Q, Zhao M, Gan T, et al. DHDMIQK(KAP): a novel nano-delivery system of dihydroxyl-tetrahydro-isoquinoline-3-carboxylic acid and KPAK towards the thrombus. J Mater Chem B. 2016;4(36):5991–6003. doi:10.1039/C6TB00874G
  • Wu J, Zhu H, Zhao M, et al. IQCA-TASS: a nano-scaled P-selectin inhibitor capable of targeting thrombus and releasing IQCA/TARGD(S)S in vivo. J Mater Chem B. 2017;5(5):877–1120.
  • Wu J, Zhao M, Wang Y, et al. N-(3-hydroxymethyl-β-carboline-1-yl-ethyl-2-yl)-L-Phe: development toward a nanoscaled antitumor drug capable of treating complicated thrombosis and inflammation. Drug Des Devel Ther. 2017;11:225–239. doi:10.2147/DDDT.S123919
  • Zhu H, Song Y, Wang Y, et al. Design, synthesis and evaluation of a novel π–π stacking nano-intercalator as an anti-tumor agent. Med Chem Commun. 2016;7(2):247–257. doi:10.1039/C5MD00507H
  • Wu J, Zhu H, Yang G, et al. Design and synthesis of nanoscaled IQCA-TAVV as a delivery system capable of antiplatelet activation, targeting arterial thrombus and releasing IQCA. Int J Nanomedicine. 2018;13:1139–1158. doi:10.2147/IJN.S15020529520141
  • Xu X, Wang Y, Wu J, et al. ATIQCTPC: a nanomedicine capable of targeting tumor and blocking thrombosis in vivo. Int J Nanomedicine. 2017;12:4415–4431. doi:10.2147/IJN.S12998928652742
  • Jin SM, Wang YN, Zhu HM, et al. Nanosized aspirin-Arg-Gly-Asp-Val: delivery of aspirin to thrombus by the target carrier Arg-Gly-Asp-Val tetrapeptide. ACS Nano. 2013;7(9):7664–7673. doi:10.1021/nn402171v23931063
  • Hu X, Zhao M, Wang Y, et al. Tetrahydro-β-carboline-3-carboxyl-thymopentin: a nano-conjugate for releasing pharmacophores to treat tumor and complications. J Mater Chem B. 2016;4:1384–1397. doi:10.1039/C5TB01930C
  • Xu W, Zhao M, Wang Y, et al. Design, synthesis, and in vivo evaluations of benzyl Nω-nitro-Nα-(9H-pyrido[3,4-b]indole-3-carbonyl)-l-argininate as an apoptosis inducer capable of decreasing the serum concentration of P-selectin. Med Chem Commun. 2016;7(9):1730–1737. doi:10.1039/C6MD00215C
  • Ma H, Zhao M, Wang Y, et al. Cholyl-l-lysine-carboxylbutyryl adriamycin prodrugs targeting chemically induced liver injury. J Mater Chem B. 2017;5(3):470–478. doi:10.1039/C6TB02205G
  • Jiang X, Zhao M, Wang Y, et al. RGD(F/S/V)-Dex: towards the development of novel, effective, and safe glucocorticoids. Drug Des Devel Ther. 2016;10:1059–1076. doi:10.2147/DDDT.S99568
  • Wu JH, Wang YJ, Wang YN, et al. Cu2+-RGDFRGDS: exploring the mechanism and high efficacy of the nanoparticle in antithrombotic therapy. Int J Nanomedicine. 2015;10:2925–2938. doi:10.2147/IJN.S7669125931819
  • Fujita Y, Mie M, Kobatake E. Construction of nanoscale protein particle using temperature-sensitive elastin-like peptide and polyaspartic acid chain. Biomaterials. 2009;30(20):3450–3457. doi:10.1016/j.biomaterials.2009.03.01219324406
  • Chen YF, Lin YC, Chen JP, et al. Synthesis and biological evaluation of novel 3,9-substituted beta-carboline derivatives as anticancer agents. Bioorg Med Chem Lett. 2015;25(18):3873–3877. doi:10.1016/j.bmcl.2015.07.05826235951
  • Zhao M, Bi L, Wang W, et al. Synthesis and cytotoxic activities of beta-carboline amino acid ester conjugates. Bioorg Med Chem. 2006;14(20):6998–7010. doi:10.1016/j.bmc.2006.06.02116806943