160
Views
11
CrossRef citations to date
0
Altmetric
Original Research

A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery

, , , , , , & show all
Pages 3525-3532 | Published online: 14 May 2019

References

  • Mousa SA, Bharali DJ. Nanotechnology-based detection and targeted therapy in cancer: nano-bioparadigms and applications. Cancers. 2011;3:2888–2903. doi:10.3390/cancers303288824212938
  • Shao C, Shang K, Xu HB, et al. Facile fabrication of hypericin-entrapped glyconanoparticles for targeted photodynamic therapy. Int J Nanomedicine. 2018;13:4319–4331. doi:10.2147/IJN.S16126230087563
  • Liu J, Huang YR, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32:693–710. doi:10.1016/j.biotechadv.2013.11.00924309541
  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–1822. doi:10.1126/science.109583315031496
  • Zhao ZL, Meng HM, Wang NN, et al. A controlled-release nanocarrier with extracellular pH value driven tumor targeting and translocation for drug delivery. Angew Chem Int Ed. 2013;52:7487–7491. doi:10.1002/anie.201302557
  • Wang ZH, Tian YF, Zhang H, et al. Using hyaluronic acid-functionalized pH stimuli-responsive mesoporous silica nanoparticles for targeted delivery to CD44-overexpressing cancer cells. Int J Nanomedicine. 2016;11:6485–6497. doi:10.2147/IJN.S11718427980406
  • Cao SP, Pei ZC, Xu YQ, Pei YX. Glyco-nanovesicles with activatable near-Infrared probes for real-time monitoring of drug release and targeted delivery. Chem Mater. 2016;28:4501–4506. doi:10.1021/acs.chemmater.6b01857
  • Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials. 2016;85:152–167. doi:10.1016/j.biomaterials.2016.01.06126871891
  • Zhang Y, Wu XW, Hou CX, et al. Dual-responsive dithio-polydopamine coated porous CeO2 nanorods for targeted and synergistic drug delivery. Int J Nanomedicine. 2018;13:2161–2173. doi:10.2147/IJN.S15200229695903
  • Feng QH, Zhang YY, Zhang WX, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater. 2016;38:129–142. doi:10.1016/j.actbio.2016.04.02427090593
  • Cui W, Li J, Decher G. Self-assembled smart nanocarriers for targeted drug delivery. Adv Mater. 2016;28:1302–1311. doi:10.1002/adma.20150247926436442
  • Dai LL, Liu JJ, Luo Z, Li M, Cai KY. Tumor therapy: targeted drug delivery systems. J Mater Chem B. 2016;4:6758–6772. doi:10.1039/C6TB01743F
  • Liu CQ, Chen ZW, Wang ZZ, et al. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy. Nanoscale. 2016;8:12570–12578. doi:10.1039/c5nr07719b26661708
  • Meng LB, Zhang WY, Li DQ, et al. pH-responsive supramolecular vesicles assembled by water-soluble pillar[5]arene and a BODIPY photosensitizer for chemo-photodynamic dual therapy. Chem Commun. 2015;51:14381–14384. doi:10.1039/C5CC05785J
  • Gao LY, Zheng B, Chen W, Schalley CA. Enzyme-responsive pillar[5]arene-based polymer-substituted amphiphiles: synthesis, self-assembly in water, and application in controlled drug release. Chem Commun. 2015;51:14901–14904. doi:10.1039/C5CC06207A
  • Chang YC, Yang K, Wei P, et al. Cationic vesicles based on amphiphilic pillar[5]arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew Chem Int Ed. 2014;53:13126–13130. doi:10.1002/anie.201407272
  • Yu GC, Han CY, Zhang ZB, et al. Pillar[6]arene- based photoresponsive host–guest complexation. J Am Chem Soc. 2012;134:8711–8717. doi:10.1021/ja302998q22540829
  • Lee BS, Yip AT, Thach AV, Rodriguez AR, Deming TJ, Kamei DT. The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles. Int J Pham. 2015;496:903–911. doi:10.1016/j.ijpharm.2015.10.028
  • Chi XD, Yu GC, Shao L, Chen JZ, Huang FH. A dual-thermoresponsive gemini-type supra-amphiphilic macromolecular [3] pseudorotaxane based on pillar[10]arene/paraquat cooperative complexation. J Am Chem Soc. 2016;138:3168–3174. doi:10.1021/jacs.5b1317326862921
  • Duan QP, Cao Y, Li Y, et al. pH-responsive supramolecular vesicles based on water-soluble pillar[6]arene and ferrocene derivative for drug delivery. J Am Chem Soc. 2013;135:10542–10549. doi:10.1021/ja405014r23795864
  • Ogoshi T, Kanai S, Fujinami S, Yamagishi TA, Nakamoto Y. Para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property. J Am Chem Soc. 2008;130:5022–5023. doi:10.1021/ja711260m18357989
  • Li H, Chen DX, Sun YL, et al. Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J Am Chem Soc. 2013;135:1570–1576. doi:10.1021/ja311516823256789
  • Chen L, Si W, Zhang L, Tang G, Li Z-T, Hou J-L. Chiral selective transmembrane transport of amino acids through artificial channels. J Am Chem Soc. 2013;135:2152–2155. doi:10.1021/ja312704e23362942
  • Yu GC, Jie KC, Huang FH. Supramolecular amphiphiles based on host-guest molecular recognition motifs. Chem Rev. 2015;115:7240–7303. doi:10.1021/cr500531525716119
  • Wang YL, Ping GC, Li CJ. Efficient complexation between pillar[5]arenes and neutral guests: from host-guest chemistry to functional materials. Chem Commun. 2016;52:9858–9872. doi:10.1039/C6CC03999E
  • Xiao TX, Zhong WW, Zhou L, et al. Artificial light-harvesting systems fabricated by supramolecular host–guest interactions. Chin Chem Lett. 2019;30:31–36. doi:10.1016/j.cclet.2018.05.034
  • Hu XB, Chen L, Si W, Yu YH, Hou JL. Pillar[5]arene decaamine: synthesis, encapsulation of very long linear diacids and formation of ion pair-stopped [2]rotaxanes. Chem Commun. 2011;47:4694–4696. doi:10.1039/c1cc10633c
  • Wang Y, Xu JF, Chen YZ, et al. Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. Chem Commun. 2014;50:7001–7003. doi:10.1039/C4CC02760D
  • Chi XD, Ji XF, Xia DY, Huang FH. A dual-responsive supra-amphiphilic polypseudorotaxane constructed from a water-soluble pillar[7]arene and an azobenzene-containing random copolymer. J Am Chem Soc. 2015;137:1440–1443. doi:10.1021/ja512978n25590459
  • Yang K, Pei YX, Wen J, Pei ZC. Recent advances in pillar[n]arenes: synthesis and applications based on host-guest interactions. Chem Commun. 2016;52:9316–9326. doi:10.1039/C6CC03641D
  • Jiang L, Huang X, Chen D, Yan H, Li X, Du X. Supramolecular vesicles coassembled from disulfide-linked benzimidazolium amphiphiles and carboxylate-substituted pillar[6]arenes that are responsive to five stimuli. Angew Chem Int Ed. 2017;56:2655–2659. doi:10.1002/anie.201611973
  • Yang K, Chang YC, Wen J, et al. Supramolecular vesicles based on complex of trp-modified pillar[5]arene and galactose derivative for synergistic and targeted drug delivery. Chem Mater. 2016;28:1990–1993. doi:10.1021/acs.chemmater.6b00696
  • Chang YC, Hou CX, Ren JL, et al. Multifunctional supramolecular vesicles based on the complex of ferrocenecarboxylic acid capped pillar[5]arene and a galactose derivative for targeted drug delivery. Chem Commun. 2016;52:9578–9581. doi:10.1039/C6CC03637F
  • Hassan W, Beuzard Y, Rosa J. Inhibition of erythrocyte sickling by cystamine, a thiol reagent. Proc Natl Acad Sci U S A. 1976;73:3288–3292.135260
  • Aleman MM, Holle LA, Stember KG, et al. Cystamine preparations exhibit anticoagulant activity. PloS One. 2015;10:e0124448. doi:10.1371/journal.pone.012444825915545
  • Karpuj MV, Becher MW, Springer JE, et al. Prolonged survival and decreased abnormal movements in transgenic model of huntington disease, with administration of the transglutaminase inhibitor cystamine. Nat Med. 2002;8:143–149. doi:10.1038/nm0202-14311821898
  • Besouw M, Masereeuw R, Heuvel LVD, Levtchenko E. Cysteamine: an old drug with new potential. Drug Discov Today. 2013;18:785–792. doi:10.1016/j.drudis.2013.02.00323416144
  • Inano H, Onoda M, Suzuki K, Kobayashi H, Wakabayashi K. Inhibitory effects of WR-2721 and cysteamine on tumor initiation in mammary glands of pregnant rats by radiation. Radiat Res. 2000;153:68–74. doi:10.1667/0033-7587(2000)153[0068:ieowac]2.0.co;210630979
  • Tatsuta M, Iishi H, Yamamura H, Baba M, Mikuni T, Taniguchi H. Inhibitory effect of prolonged administration of cysteamine on experimental carcinogenesis in rat stomach induced by N-methyl-N’-nitro-N-nitrosoguanidine. Int J Cancer. 1988;41:423–426.3346107
  • Fujisawa T, Rubin B, Suzuki A, et al. Cysteamine suppresses invasion, metastasis and prolongs survival by inhibiting matrix metalloproteinases in a mouse model of human pancreatic cancer. PLoS One. 2012;7:e34437. doi:10.1371/journal.pone.003443722532830
  • Lespinasse F, Oiry J, Fatome M, et al. Radioprotection of EMT6 tumor by a new class of radioprotectors based on a pseudo-peptide cysteamine combination. Int J Radiat Oncol Biol Phys. 1985;11:1035–1038.2985525
  • Wan XM, Zheng F, Zhang L, et al. Autophagy-mediated chemosensitization by cysteamine in cancer cells. Int J Cancer. 2011;129:1087–1095. doi:10.1002/ijc.2577121080439
  • Chen W, Zou Y, Meng FH, et al. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs. Biomacromolecules. 2014;15:900–907. doi:10.1021/bm401749t24460130
  • Chang YC, Lv YH, Wei P, et al. Multifunctional glycol-nanofibers: siRNA induced supermolecular assembly for codelivery In vivo. Adv Funct Mater. 2017;27:1703083. doi:10.1002/adfm.201703083
  • Zhang J, Li C, Wang Y, Zhuo RX, Zhang XZ. Controllable exploding microcapsules as drug carriers. Chem Commun. 2011;47:4457–4459. doi:10.1039/c1cc10337g
  • Yang J, Shao L, Yu GC. Construction of pillar[6]arene-based CO2 and UV dual-responsive supra-amphiphile and application in controlled self-assembly. Chem Commun. 2016;52:3211–3214. doi:10.1039/C5CC10617F