75
Views
5
CrossRef citations to date
0
Altmetric
Original Research

MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector

, , , , &
Pages 3189-3201 | Published online: 02 May 2019

References

  • Allemani C, Matsuda T, Di Carlo V, et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37513025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. The Lancet. 2018;391:1023–1075. doi:10.1016/S0140-6736(17)33326-3
  • Boehm-Sturm P, Haeckel A, Hauptmann R, et al. Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology. 2018;286(2):537–546. doi:10.1148/radiol.201717011628880786
  • Vandsburger MH, Radoul M, Addadi Y, et al. Ovarian carcinoma: quantitative biexponential MR imaging relaxometry reveals the dynamic recruitment of ferritin-expressing fibroblasts to the angiogenic rim of tumors. Radiology. 2013;268(3):790–801. doi:10.1148/radiol.1312205323801774
  • Lee CW, Choi SI, Lee SJ, et al. The effectiveness of ferritin as a contrast agent for cell tracking MRI in mouse cancer models. Yonsei Med J. 2017;58(1):51–58. doi:10.3349/ymj.2017.58.1.5127873495
  • Cheng S, Mi R, Xu Y, et al. Ferritin heavy chain as a molecular imaging reporter gene in glioma xenografts. J Cancer Res Clin Oncol. 2017;143:941–951. doi:10.1007/s00432-017-2356-z28247036
  • Guo R, Li Q, Yang F, et al. In vivo MR imaging of dual MRI reporter genes and deltex-1 gene-modified human mesenchymal stem cells in the treatment of closed penile fracture. Mol Imaging Biol. 2018;20:417–427. doi:10.1007/s11307-017-1128-028971290
  • Yang Y, Gong M, Yang H, et al. MR molecular imaging of tumours using ferritin heavy chain reporter gene expression mediated by the hTERT promoter. Eur Radiol. 2016;26:4089–4097. doi:10.1007/s00330-016-4259-926960542
  • Pereira S, Moss D, Williams S, Murray P, Taylor A. Overexpression of the MRI reporter genes ferritin and transferrin receptor affect iron homeostasis and produce limited contrast in mesenchymal stem cells. Int J Mol Sci. 2015;16:15481–15496.26184159
  • Cao M, Mao J, Duan X, et al. In vivo tracking of the tropism of mesenchymal stem cells to malignant gliomas using reporter gene-based MR imaging. Int J Cancer. 2018;142:1033–1046.29047121
  • Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochimica et Biophys Acta (BBA) Gen Subj. 2009;1790:589–599. doi:10.1016/j.bbagen.2008.09.004
  • Iordanova B, Ahrens ET. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. NeuroImage. 2012;59:1004–1012. doi:10.1016/j.neuroimage.2011.08.06821939774
  • He X, Cai J, Liu B, Zhong Y, Qin Y. Cellular magnetic resonance imaging contrast generated by the ferritin heavy chain genetic reporter under the control of a Tet-On switch. Stem Cell Res Ther. 2015;6:207. doi:10.1186/s13287-015-0205-z26517988
  • Ding WC, Guo L. Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J Nanomedicine. 2013;8:4631–4639. doi:10.2147/IJN.S5174524348038
  • Shen Y, Li X, Dong DD, Zhang B, Xue YR, Shang P. Transferrin receptor 1 in cancer: a new sight for cancer therapy. Am J Cancer Res. 2018;8(6):916–931.30034931
  • Kim KI, Lee YJ, Lee TS, et al. In vitro radionuclide therapy and in vivo scintigraphic imaging of alpha-fetoprotein-producing hepatocellular carcinoma by targeted sodium iodide symporter gene expression. Nucl Med Mol Imaging. 2013;47:1–8.24895502
  • Wu L, Johnson M, Sato M. Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med. 2003;9(10):421. doi:10.1016/j.molmed.2003.08.00514557054
  • Aung W, Hasegawa S, Koshikawa-Yano M, et al. Visualization of in vivo electroporation-mediated transgene expression in experimental tumors by optical and magnetic resonance imaging. Gene Ther. 2009;16:830–839. doi:10.1038/gt.2009.5519458649
  • Li J, Loh X. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1000–1017. doi:10.1016/j.addr.2008.02.01118413280
  • Cryan S, Holohan A, Donohue R, Darcy R, O Driscoll CM. Cell transfection with polycationic cyclodextrin vectors. Eur JPharm Sci. 2004;21:625–633. doi:10.1016/j.ejps.2004.01.00115066663
  • Liu X, Chen X, Chua MX, Li Z, Loh XJ, Wu Y-L. Injectable supramolecular hydrogels as delivery agents of Bcl-2 conversion gene for the effective shrinkage of therapeutic resistance tumors. Adv Healthc Mater. 2017;6:1700159. doi:10.1002/adhm.v6.11
  • Ping Y, Liu C, Zhang Z, Liu KL, Chen J, Li J. Chitosan-graft-(PEI-β-cyclodextrin) copolymers and their supramolecular PEGylation for DNA and siRNA delivery. Biomaterials. 2011;32:8328–8341. doi:10.1016/j.biomaterials.2011.07.03821840593
  • Huang H, Yu H, Tang G, Wang Q, Li J. Low molecular weight polyethylenimine cross-linked by 2-hydroxypropyl-γ-cyclodextrin coupled to peptide targeting HER2 as a gene delivery vector. Biomaterials. 2010;31:1830–1838. doi:10.1016/j.biomaterials.2009.11.01219942284
  • Forrest ML, Gabrielson N, Pack DW. Cyclodextrin-polyethylenimine conjugates for targeted in vitro gene delivery. Biotechnol Bioeng. 2005;89:416–423. doi:10.1002/bit.2035615627256
  • Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci. 2001;3:E21. doi:10.1208/ps03032111741272
  • Li JM, Zhang W, Su H, et al. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier. Int J Nanomedicine. 2015;10:3147–3162. doi:10.2147/IJN.S6714625960653
  • Wenz G. Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl. 1994;33:803–822. doi:10.1002/(ISSN)1521-3773
  • Chen Y, Yao X, Ruan G, et al. Gene-carried chitosan-linked polyethylenimine induced high gene transfection efficiency on dendritic cells. Biotechnol Appl Biochem. 2012;59:346–352. doi:10.1002/bab.103623586911
  • Ping Y, Hu Q, Tang G, Li J. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials. 2013;34:6482–6494. doi:10.1016/j.biomaterials.2013.03.07123602276
  • Chen X, Qiu YK, Owh C, Loh XJ, Wu YL. Supramolecular cyclodextrin nanocarriers for chemo- and gene therapy towards the effective treatment of drug resistant cancers. Nanoscale. 2016;8:18876–18881. doi:10.1039/c6nr08055c27819368
  • Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med. 2005;7:992–1009. doi:10.1002/jgm.77315920783
  • Cohen B, Ziv K, Plaks V, Harmelin A, Neeman M. Ferritin nanoparticles as magnetic resonance reporter gene. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:181–188. doi:10.1002/wnan.1120049789
  • Cohen B, Ziv K, Plaks V, et al. MRI detection of transcriptional regulation of gene expression in transgenic mice. Nat Med. 2007;13:498–503. doi:10.1038/nm149717351627
  • Zhou Z, Tian R, Wang Z, et al. Artificial local magnetic field inhomogeneity enhances T2 relaxivity. Nat Commun. 2017;8:15468. doi:10.1038/ncomms1546828516947
  • Pereira S, Herrmann A, Moss D, et al. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene. Contrast Media Mol Imaging. 2016;11:236–244. doi:10.1002/cmmi.168626929139
  • Feng Y, Liu Q, Zhu J, Xie F, Li L. Efficiency of ferritin as an MRI reporter gene in NPC cells is enhanced by iron supplementation. J Biomed Biotechnol. 2012;2012:1–11. doi:10.1155/2012/72834221836813
  • Graham RM, Reutens GM, Herbison CE, et al. Transferrin receptor 2 mediates uptake of transferrin-bound and non-transferrin-bound iron. J Hepatol. 2008;48(2):327–334. doi:10.1016/j.jhep.2007.10.00918083267
  • Richardson DR. Mysteries of the transferrin-transferrin receptor 1 interaction uncovered. Cell. 2004;116(4):483–485.14980214
  • Wang CY, Knutson MD. Hepatocyte divalent metal-ion transporter-1 is dispensable for hepatic iron accumulation and non-transferrin-bound iron uptake in mice. Hepatology. 2013;58(2):788–798. doi:10.1002/hep.2640123508576
  • Jasanoff A. Contrast Agents for Molecular-Level fMRI In: Uludag K, Ugurbil K, Berliner L, editors. fMRI: From Nuclear Spins to Brain Functions. Biological Magnetic Resonance. Vol. 30 Boston: Springer; 2015:865–894.
  • Xue S, Yang H, Qiao J, et al. Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc Natl Acad Sci USA. 2015;112:6607–6612. doi:10.1073/pnas.142302111225971726
  • Yamashita T, Kitao A, Matsui O, et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology. 2014;60(5):1674–1685. doi:10.1002/hep.2716324700365
  • Midura S, Schneider E, Rosen GM, Winalski CS, Midura RJ. In vitro chondrocyte toxicity following long-term, high-dose exposure to Gd-DTPA and a novel cartilage-targeted MR contrast agent. Skeletal Radiol. 2017;46:23–33. doi:10.1007/s00256-016-2502-827815598
  • Singh M, Mugler K, Hailoo DW, et al. Differential Expression of Transferrin Receptor (TfR) in a spectrum of normal to malignant breast tissues: implications for in situ and invasive carcinoma. Appl Immunohistochem Mol Morphol. 2011;19(5):417–423. doi:10.1097/PAI.0b013e318209716e21297444
  • Mulik RS, Mönkkönen J, Juvonen RO, Mahadik KR, Paradkar AR. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int J Pharm. 2010;398(1–2):190–203. doi:10.1016/j.ijpharm.2010.07.02120655375
  • Han YQ, Zhang Y, Li DN, Chen YY, Sun JP, Kong FS. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int J Nanomedicine. 2014;9:4107–4116. doi:10.2147/IJN.S6777025187713
  • Singh RP, Sharma G, Agrawal P, Pandey BL, Koch B, Muthu MS. Transferrin receptor targeted PLA-TPGS micelles improved efficacy and safety in docetaxel delivery. Int J Biol Macromol. 2016;83:335–344. doi:10.1016/j.ijbiomac.2015.11.08126657586