109
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Poly(3-hydroxi-butyrate-co-3-hydroxy-valerate) (PHB-HV) microparticles loaded with holmium acetylacetonate as potential contrast agents for magnetic resonance images

, , , , &
Pages 6869-6889 | Published online: 29 Aug 2019

References

  • Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small. 2005;1(2):172–179. doi:10.1002/smll.20040013017193427
  • Xao-Jie C, Xue-Qiong Z, Liu Q, Zhang J, Zhou G. Nanotechnology: a promising method for oral cancer detection and diagnosis. J Nanobiotechnol. 2018;16(52):1–17.
  • Capella MAM, Capella LS. A light in muitidrug resistance: photodynamic treatment of muitidrug-resistant tumors. J Biomed Sci. 2003;10:361–366. doi:10.1007/bf0225642712824695
  • Schäfer M, Schmitz C, Facius G, et al. Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production. Photochem Photobiol. 2000;71:514–523.10818781
  • Moraes RM, Dayan FE, Canel C. The lignans of Podophyllum. Stud Nat Prod Chem. 2002;26(Part G):149–182.
  • You Y. Podophyllotoxin derivatives: current synthetic approaches for new anticancer agents. Curr Pharm Des. 2005;11:1695–1717.15892669
  • Rose WC. Preclinical antitumor activity of taxanes, In: Taxol®-Science and Applications. Suffness M, editor. chap. 8. CRC Press, Inc.; 1995.
  • Cronstein BN, Montesinos MC, Chan E. Adenosine mediates the antiinflammatory effects of methotrexate as well as its toxicities. Drug Develop Res. 2001;52:394–396.
  • Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate: implications for the treatment of rheumatoid arthritis. Bull NYH Hosp Jt Dis. 2007;65(3):168–173.
  • Rosenberg B, Van Camp L, Trosko JE, Mansour VH. Platinum compounds: a new class of potent antitumour agents. Nature. 1969;222(5191):385–386. doi:10.1038/222385a05782119
  • Milenic DE, Brady ED, Brechbiel MW. Antibody targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–499. doi:10.1038/nrd141315173838
  • Lliakis G. The role of DNA double strand breaks in ionizing radiation-induced killing of eukaryotic. Cells BioEssays. 1991;13:641–648. doi:10.1002/bies.9501312041789781
  • Kampf G. Induction of DNA double-strand breaks by ionizing radiation of different quality and their relevance for cell inactivation. Radiobiol Radiother. 1988;29(6):631–658.
  • Panchapakesan B, Wickstrom E. Nanotechnology for sensing, imaging and treating cancer. Surg Oncol Clin N Am. 2007;16:293–305. doi:10.1016/j.soc.2007.03.00217560513
  • Wang MD, Shin DM, Simons JW, Nie S. Nanotechnology for targeted cancer therapy. Expert Ver Anticancer Ther. 2007;7:833–837.
  • Shanthill CN, Gupta R, Mahato AK. Traditional and emerging applications of microspheres: a review. Int J PharmTech Res. 2010;2(1):675–681.
  • Raguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Bit J Cancer. 2008;99:387–391.
  • Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract. 2005;14(1):35–48. doi:10.1159/000086183
  • Mellor HR, Callaghan R. Resistance to chemotherapy in cancer: a complex and integrated cellular response. Pharmacology. 2008;81:275–300. doi:10.1159/00011596718259091
  • Fojo T. Cancer, DNA repair mechanisms, and resistance to chemotherapy. J Natl Cancer Inst. 2001;93(19):1434–1436. doi:10.1093/jnci/93.19.143411584051
  • Biju V, Itoh T, Anas A, Sujith A, Ishikawa M. Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications. Anal Bioanal Chem. 2008;391:2469–2495. doi:10.1007/s00216-008-1856-818548237
  • EL-Sayed I, Huang X, El-Sayed MA. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nanoletters. 2005;5(5):829–834.
  • EL-Sayed I, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Canc Letters. 2006;239:129–135.
  • Hamelers IH, Kroon AI. Nanocapsules: a novel lipid formulation platform for platinum-based anti-cancer drugs. J Liposome Res. 2007;17(3–4):183–189. doi:10.1080/0898210070153029018027238
  • Grallert SRM, Rangel-Yagui CO, Pasqualoto KFM, Tavares LC. Polymeric micelles and molecular modeling applied to the development of radiopharmaceuticals. Braz J Pharm Sci. 2012;48(1):1–16.
  • LaFave JW, Grotenhuis L, Kim YS, Maclean LD, Perry JF. 90Y-tagged microspheres in adjuvant tumor theraphy. Surgery. 1963;53:778–783.13928002
  • Blanchard RJ, Grotenhuis L, LaFave JW, Frye JS, Perry JF. Treatment of experimental tumours. Arch Surg. 1964;89:406–409. doi:10.1001/archsurg.1964.0132002017002514160169
  • Kennedy A, Nag S, Salem R, et al. Recommendations for radioembolization of hepatic cancer malignancies using yttrium-90 microsphere brachytherapy: a consensus panel report from the radioembolization brachytherapy oncology consortium. Int J Radiat Oncol Biol Phys. 2007;68(1):13–23.17448867
  • Vente MAD, Wondergem M, van der Tweel I, et al. Yttrium-90 microsphere radioembolization for the treatment of liver malignancies: a structured meta-analysis. Eur Radiol. 2009;19:951–959.18989675
  • Houle S, Yip TK, Shepherd FA, et al. Hepatocellular carcinoma: pilot trial of treatment with Y-90 microspheres. Radiology. 1989;172(3):857–860. doi:10.1148/radiology.172.3.25495672549567
  • Carr BI, Sheetz M, Brown M, et al. Hepatic arterial 90yttrium-labeled glass microspheres (Therasphere) as treatment for unresectable HCC in forty three patients. Proc Annu Meet Am Assoc Cancer Res. 2002;21(abstr):553.
  • van Es RJ, Nijsen JF, van Het Schip AD, Dullens HF, Slootweg PJ, Koole R. Intra-arterial embolization of head-and-neck cancer with radioactive holmium-166 poly(L-lactic acid) microspheres: an experimental study in rabbits. Int J Oral Maxillofac Surg. 2001;30(5):407–413. doi:10.1054/ijom.2001.012911720043
  • Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev. 2009;89:1269–1339. doi:10.1152/physrev.00027.200819789382
  • Mohnike K, Wieners G, Schwartz F, et al. Computed tomography-guided high-dose brachytherapy in hepatocellular carcinoma: safety, efficacy, and effect on survival. Int J Radiation Oncology Biol Phys. 2010;78(1):172–179.
  • Ricke J, Wust P, Wieners G, et al. Liver malignancies: CT-guided interstitial brachytherapy in patients with unfavorable lesions for thermal ablation. J Vasc Interv Radiol. 2004;15:1279–1286.15525748
  • Armelao L, Quici S, Barigelletti F, et al. Design of luminescent lanthanide complexes: from molecules to highly efficient photo-emitting materials. Coord Chem Rev. 2010;254:487–505.
  • Belian MF, de Sa GF, Alves S Jr, Galembeck A. Systematic study of luminescent properties of new lanthanide complexes using crown ethers as ligand. J Limun. 2011;131:856–860.
  • Aiga F, Iwanaga H, Amano A. Density functional theory investigation of Eu(III) complexes with-diketonates and phosphine oxides: model complexes of fluorescence compounds for ultraviolet LED devices. J Phys Chem A. 2005;109:11312–11316. doi:10.1021/jp055353516331916
  • Binnemans K Rare-earth beta-diketonates, In: Gschneider KA Jr, Bünzli JCG, Pecharsky VK, editors. Handbook on the Physics and Chemistry of Rare Earths; Vol. 35; Amsterdam: Elsevier; 2003:107–272.
  • Binnemans K, Van Deun R, Görller-Walrand C, et al. Spectroscopic behavior of lanthanide (III) coordination compounds with Schiff base ligands. Phys Chem Chem Phys. 2000;2:3753–3757.
  • Pui A, Malutan T, Tataru L, Malutan C, Humelnicu D, Carja G. New complexes of lanthanide Ln (III), (Ln = La, Sm, Gd, Er) with Schiff bases derived from 2-furaldehyde and phenylenediamines. Polyhedron. 2011;30:2127–2131.
  • Kim JH, Lee JT, Kim EK, et al. Percutaneous sclerotherapy of renal cysts with a beta-emitting radionuclide, holmium-166-chitosan complex. Korean J Radiol. 2004;5:128–133. doi:10.3348/kjr.2004.5.2.12815235238
  • Kheyfits A. Yttrium-90 radioembolization. Radiol Today. 2010;11(9):20.
  • Yttrium-90 handling precautions. Available from: http://www.perkinelmer.com/CMSResources/Images/44-74001tch_yttrium90.pdf. Accessed 616, 2018.
  • Rajendran JG, Eary JF, Bensinger W, Durack LD, Vernon C, Fritzberg A. High-dose 166Ho-DOTMP in myeloablative treatment of multiple myeloma: pharmacokinetics, biodistribution, and absorbed dose estimation. J Nucl Med. 2002;43:1383–1390.12368378
  • Tuner JH, Claringbold PG, Kelmp PBF, et al. 166-Ho microsphere liver radiotherapy: a pre-clinical SPECT dosimetry study in the pig. Nucl Med Commun. 1994;15:545–553.7970432
  • Nijsen JFW, Zonnenberg BA, Woittiez JR, et al. Holmium-166 poly lactic acid microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1994;26:699–704.
  • Zielhuis SW, Nijsen JFW, Seenwoolde JH, et al. Long-term toxicity of holmium loaded poly(L-lactic acid) microspheres in rats. Biomaterials. 2007;28:4591–4599. doi:10.1016/j.biomaterials.2007.07.01217655925
  • Vente MA, Nijsen JF, de Wit TC, et al. Clinical effects of transcatheter hepatic arterial embolization with holmium-166 poly(L-lactic acid) microspheres in healthy pigs. Eur J Nucl Med Mol Imaging. 2008;35:1259–1271. doi:10.1007/s00259-008-0747-818330569
  • Speenwoolde JH, Nijsen JF, Bartels LW, Zielhus SW, van Het Schip AD, Bakker CJ. Internal radiation therapy of liver tumors: qualitative and quantitative magnetic resonance imaging of the biodistribution of holmium-loaded microspheres in animal models. Magn Reson Med. 2004;53:76–84.
  • Norek M, Peters JA. MRI contrast agents based on dysprosium or holmium. Prog Nucl Mag Res Sp. 2011;59:64–82.
  • Aime S, Carrera C, Castelli DD, Crich SG, Terreno E. Tunable imaging of cells labeled with MRI-PARACEST agents. Angew Chim Int Ed. 2005;44:1813–1815.
  • Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev. 2006;35:512–523. doi:10.1039/b510982p16729145
  • Thibon A, Pierre VC. Principles of responsive lanthanide-based luminescent probes for cellular imaging. Anal Bioanal Chem. 2009;394:107–120. doi:10.1007/s00216-009-2683-219283368
  • Bünzli JC. Lanthanide luminescence for biomedical analyses and imaging. Chem Rev. 2010;110:2729–2755.20151630
  • Azevedo MBM, Melo VHS, Soares CRJ, et al. Development and characterisation of polymeric microparticle of poly(d,l-lactic acid) loaded with holmium acetylacetonate. J Microencapsul. 2018;35(3):281–291. doi:10.1080/02652048.2018.147784329790801
  • Swbrick J. Encyclopedia of Pharmaceutical Technology. England: Informa Healthcare; 2007.
  • El-Sawy NM, El-Arnaouty MB, Ghaffar AMA. γ-Irradiation effect on the non-cross-linked and cross-linked polyvinyl alcohol films. Polym Plast Technol Eng. 2010;49:169–177.
  • Milicevic D, Trifunovic S, Galovic S, Suljovrujic E. Thermal and crystallization behaviour of gamma irradiated PLLA. Radiat Phys Chem. 2007;76:1376–1380.
  • Carswell-Pomerantz T, Hill DJT, O’Donnell JH, Pomery PJ. An electron spin resonance study of the radiation chemistry of poly(hydroxybutyrate). Radiat Phys Chem. 1995;45:737–744.
  • Luo S, Netravali AN. Effect of 60Co γ-radiation on the properties of poly(hydroxybutyrate-co-hydroxyvalerate). J Appl Polym Sci. 1999;73:1059–1067.
  • Choi WS, Ahn KJ, Lee DW, Byun MW, Park HJ. Preparation of chitosan oligomers by irradiation. Polym Degrad Stabil. 2002;78:533–538.
  • Gryczka U, Dondi D, Chmielewski AG, Migdal W, Buttafava A, Faucitano A. The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiat Phys Chem. 2009;78:543–548.
  • Sato K. Radiation sterilization of medical products. Radioisotopes. 1983;32:431–439.6364263
  • Wang B, Kodama M, Mukataka S, Kokufuta E. On the intermolecular crosslinking of PVA chains in an aqueous solution by γ-ray irradiation. Polym Gels Netw. 1998;6:71–81.
  • Chang Z, Liu G, Tian Y, Zhang Z. Preparation of micron-size monodisperse poly(vinyl acetate) microspheres with γ-rays-initiated dispersion polymerization in microreactor. Mater Lett. 2004;58:522–524.
  • Yang SL, Wu ZH, Yang W, Yang MB. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym Test. 2008;27:957–963.
  • Ayyub P, Maitra AN, Shah DO. Formation of theoretical density microhomogeneous Yba2Cu3O7-x, using a microemulsion – mediated process. Physica C. 1990;168:571–579.
  • Kumar P, Pillai V, Bates SR, Shah DO. Preparation of Yba2cu3o7-X superconductor by coprecipitation of nanosize oxalate precursor powder in microemulsions. Mater Lett. 1993;16(2–3):68–74.
  • Rangasamy M. Nano technology: a review. J Appl Pharm Sci. 2011;01(02):08–16.
  • Vieira DB, Gamarra LF. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein 2016;14:99-103. doi:10.1590/S1679-45082016RB3475(
  • Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stabil. 2010;95:2126–2146.
  • Benicewicz BC, Hopper PH. Polymer for absorbable surgical sutures – part II. J Bioact Compat Polym. 1991;6:64–94.
  • Mumper RJ, Jay M. Formation and stability of lanthanide complexes and their encapsulation into polymeric microspheres. J Phys Chem. 1992;96:8626–8631.
  • Nijsen JFW, van Steenbergen MJ, Kooijiman H, et al. Influence of neutron irradiation on holmium acetylacetonate loaded poly(l-lactic acid) microspheres. Biomaterials. 2001;22:3073–3081.11575483
  • Nijsen JFW, van Steenbergen MJ, Kooijiman H, et al. Characterization of poly(L-acid lactic) microspheres loaded with holmium acetylacetonate loaded. Biomaterials. 2001;22:3073–3081.11575483
  • Zielhuis SW, Nijsen JFW, Figueiredo F, et al. Surface characteristics of holmium-loaded poly(L-lactic acid) microspheres. Biomaterials. 2005;26:925–932. doi:10.1016/j.biomaterials.2004.03.02815353204
  • Zielhuis SW, Nijsen JFW, de Roos R, et al. Production of GMP-grade radioactive holmium loaded poly(l-lactic acid) microspheres for clinical application. Int J Pharm. 2006;311:69–74. doi:10.1016/j.ijpharm.2005.12.03416439073
  • Hamoudeh M, Fessi H, Salim H, Barbos D. Holmium-loaded PLLA nanoparticles for intratumoral radiotherapy via the TMT technique: preparation, characterization, and stability evaluation after neutron irradiation. Drug Dev Ind. Pharm. 2008;34:796–806. doi:10.1080/0363904080191862318651284
  • Smits MLJ, Nijsen JFW, van Den Bosch MAAJ, Lam MGEH, Vente MAD, Huijbregts JE. Holmium-166 radioembolization for the treatment of patients with liver metastases: design of the phase I HEPAR trial. J Exp Clin Cancer Res. 2010;29:70. doi:10.1186/1756-9966-29-1720550679
  • Vente MAD, de Witt TC, van Den Bosch MAAJ, et al. Holmium-166 poly(L-lactic acid) microsphere radioembolisation of the liver: technical aspects studied in a large animal model. Eur Radiol. 2010;20:862–869. doi:10.1007/s00330-009-1613-119789880
  • Nijsen JFW, Zonnenberg BA, Woittiez JR, et al. Holmium-166 poly (L-lactic acid) microspheres applicable for intra-arterial radionuclide therapy of hepatic malignancies: effects of preparation and neutron activation techniques. Eur J Nucl Med. 1999;26:699–704.10398817
  • Fujinaga T, Lee HL. Acetylacetone as chelating reagent, extracting solvent, and electrolysis medium: polarographic determination of uranium(VI) and iron(III). Talanta. 1977;24(6):395–396.18962109
  • Afghan BK, Dagnall RM, Thompson KC. Inorganic polarography in organic solvents-III analytical applications of metal-acetylacetonate complexes in toluene. Talanta. 1967;14(7):715–720.18960154
  • Steinbach JF, Freiser H. Acetylacetone as analytical extraction agent. Anal Chem. 1954;26(2):375–379.
  • Ganjali MR, Daftari A, Mizani F, SalavatiI-Niasarj M. Titanium acetylacetonate as an excellent Ion-carrier. Bull Korean Chem Soc. 2003;24(1):23–26.
  • Avinc O, Khoddami A. Overview of Poly(Lactic acid) (PLA) fibre. Part I: production, properties, performance, environmental impact, and end-use applications of Poly(lactic acid) fibers. Fibre Chem. 2009;41(6):391–401.
  • Hu YS, Zhang ZP, Song D, Bai DR, Wang YM. Preparation and properties of high strength rods from L- and D,L-lactide copolymer. Chin J Polym Sci. 2001;19(4):351–357.
  • Matsusaki H, Abe H, Doi Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp.61-3. Biomacromolecules. 2000;1(1):17–22.11709837
  • Lee Y, Kim MK, Kim GJ, Chang HN, Park YH. Production of poly(β-hydroxybutyrate-co-β-hydroxyvalerate) from glucose and valerate in alcaligenes eutrophus. Biotechnol.Lett. 1995;17(6):571–574.
  • Holmes PA. Applications of PHB – a microbially produced biodegradable thermoplastic. Phys Technol. 1985;16(1):32–36.
  • Quental AC, de Carvalho FP, Tada ES, Felisberti MI. Blendas de PHB e seus copolímeros: miscibilidade e compatibilidade. Quim Nova. 2010;33(2):438–446.
  • Bult W, Seevinck PR, Krijger GC, et al. Microspheres with ultrahigh holmium content for radioablation of malignancies. Pharmaceut Res. 2009;26(6):1371–1378.
  • Bitar R, Leung G, Perng R, et al. What every radiologist wants to know but is afraid to ask. RadioGraphics. 2006;26:513–537. doi:10.1148/rg.e2416549614
  • Mazzola AA. Ressonância magnética: princípios de formação da imagem e aplicações em imagem funcional. Revista Brasileira De Física Médica. 2009;3:117–129.
  • Tilloy S, Bertoux F, Mortreux A, Monflier E. Chemically modified β-cyclodextrins in biphasic catalysis: a fruitful contribution of the host-guest chemistry to the transition-metal catalyzed reactions. Catal Today. 1999;48:245–253.
  • Mueller RH, Wallis KH. Surface modification of i.v. injectable biodegradable nanoparticles with poloxamer polymers and poloxamine 908. Int J Pharm. 1993;89:25–31.
  • Frank MM, Fries LF. The role of complement in inflammation and phagocytosis. Immunol Today. 1991;12(9):322–326. doi:10.1016/0167-5699(91)90009-I1755943
  • Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. doi:10.1016/j.ijpharm.2005.10.01016303268
  • De Azevedo MBM, Tasic L, Fattori J, et al. New formulation of an old drug in hypertension treatment: the sustained release of captopril from cyclodextrin nanoparticles. Int J Nanomedicine. 2011;6:1005–1016.21720512
  • Tanaka T, Azevedo MBM, Tanaka T, et al. Colorectal cancer chemoprevention by 2 -cyclodextrin inclusion compounds of auraptene and 4-geranyloxyferulic acid. Int J Cancer. 2010;126:830–840. doi:10.1002/ijc.2483319688830
  • Bünzli JC, Piguet C. Taking advantage of luminescent lanthanide ions. Chem Soc Rev. 2005;34:1048–1077.16284671
  • Diaz-Acosta I, Baker J, Cordes W, Pulay P. Calculated and experimental geometries and infrared spectra of metal tris-acetylacetonates: vibrational spectroscopy as a probe of molecular structure for ionic complexes. Part I. J Phys Chem A. 2001;105:238–244.
  • Colthulp NB, Day LH, Wiberley SE. Introduction to Infrared and Raman Spectroscopy. 3ª ed. London: Academic Press; 1990.
  • Oliveira LM, Araujo ES, Guedes SML. Gamma irradiation effects on poly(hydroxybutyrate). Polym Degrad Stabil. 2006;91:2157–2162.
  • Hussein GAM, Ismail HM. Characterization of lanthanium oxide formed as a final decomposition product of lanthanium acetylacetonate: thermoanalytical, spectroscopic and microscopic studies. Powder Technol. 1995;84:185–190.
  • Hussein GAM. Rare earth metal oxides: formation, characterization and catalytic activity. Thermoanalytical and applied pyrolysis review. J Anal Appl Pyrol. 1996;37:111–149.
  • Gonçalvez SP, Martins-Franchetti SM. Action of soil microorganisms on PCL and PHBV blend and films. J Polym Environ. 2010;18:714–719.
  • Kooijman H, Nijsen F, Spek AL, Schip FV. Diaquatris(pentane-2,4-dionato-O, O’) holmium (III) monohydrate and diaquatris(pentane-2,4-dionato-O,O’) holmium (III) 4-hydroxypentan-2-one solvate dehydrate. Acta Crystallogr C. 2000;56:156–158. doi:10.1107/s010827019901356610777870
  • Lakouraj MM, Tajbakhsh M, Mokhtary M. Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J. 2005;14:1022–1030.
  • Song HT, Choi JS, Huh YM. Surface modulation of magnetic nanocrystals in the development of highly efficient magnetic resonance probes for intracellular labeling. J Am Chem Soc. 2005;127:9992–9993. doi:10.1021/ja051833y16011350
  • Qin J, Laurent S, Jo YS, et al. A high-performance magnetic resonance imaging T2 contrast agent. Adv Mater. 2007;19(14):1874–1878.
  • Estelrich J, Sánchez-Martín MJ, Busquets MA. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727–1741. doi:10.2147/IJN.S7650125834422
  • Li Y, Chen T, Tan W, Talham DR. Size-dependent MRI relaxivity and dual imaging with Eu0.2Gd0.8PO4·H2O nanoparticles. Langmuir. 2014;30(20):5873–5879. doi:10.1021/la500602x24825171