172
Views
44
CrossRef citations to date
0
Altmetric
Original Research

Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite

, , , , , , , , , , & show all
Pages 2011-2027 | Published online: 22 Mar 2019

References

  • LevingstoneTJMatsikoADicksonGRO’BrienFJGleesonJPA biomimetic multi-layered collagen-based scaffold for osteochondral repairActa Biomater20141051996200410.1016/j.actbio.2014.01.00524418437
  • ShermanSLThyssenENuelleCWOsteochondral autologous transplantationClin Sports Med201736348950010.1016/j.csm.2017.02.00628577708
  • SeoSJMahapatraCSinghRKKnowlesJCKimHWStrategies for osteochondral repair: focus on scaffoldsJ Tissue Eng20145 204173141454185010.1177/2041731414541850
  • GuoXWangCDuanCRepair of osteochondral defects with autologous chondrocytes seeded onto bioceramic scaffold in sheepTissue Eng20041011–121830184010.1089/ten.2004.10.183015684691
  • WangXGroganSPRieserFTissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro studyBiomaterials200425173681368810.1016/j.biomaterials.2003.10.10215020143
  • ChenGTanakaJTateishiTOsteochondral tissue engineering using a PLGA–collagen hybrid meshMat Sci Eng200626112412910.1016/j.msec.2005.08.042
  • SchaeferDMartinIShastriPIn vitro generation of osteochondral compositesBiomaterials200021242599260611071609
  • GaoJDennisJESolchagaLAAwadallahASGoldbergVMCaplanAITissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cellsTissue Eng20017436337110.1089/1076327015243642711506726
  • KreklauBSittingerMMensingMBTissue engineering of biphasic joint cartilage transplantsBiomaterials199920181743174910503975
  • NiederauerGGSlivkaMALeatherburyNCEvaluation of multiphase implants for repair of focal osteochondral defects in goatsBiomaterials200021242561257411071606
  • HunzikerEBDriesangIMFunctional barrier principle for growth-factor-based articular cartilage repairOsteoarthritis Cartilage200311532032712744937
  • DormerNHBerklandCJDetamoreMSEmerging techniques in stratified designs and continuous gradients for tissue engineering of interfacesAnn Biomed Eng20103862121214110.1007/s10439-010-0033-320411333
  • KonEDelcoglianoMFilardoGBusaccaMDi MartinoAMarcacciMNovel nano-composite multilayered biomaterial for osteochondral regeneration: a pilot clinical trialAm J Sports Med20113961180119010.1177/036354651039271121310939
  • DengJSheRHuangWDongZMoGLiuBA silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit kneeJ Mater Sci Mater Med20132482037204610.1007/s10856-013-4944-z23677433
  • YePTianRYHuangWLMaLKDengJSilk fibroin/chitosan/nano hydroxyapatite complicated scaffolds for bone tissue engineeringZhongguo Zuzhi Gongcheng Yanjiu2013172952695274
  • DengJSheRFHuangWLYuanCMoGFibroin protein/chitosan scaffolds and bone marrow mesenchymal stem cells culture in vitroGenet Mol Res20141335745575310.4238/2014.July.29.125117332
  • MaLKYePDengJHuangWLTianRYLvXFThe cytotoxicity of silk fibroin/chitosan/nano hydroxyapatite bone tissue engineering scaffolds in vitroXibu Yixue2014268975977980
  • RuanSQDengJYanLHuangWLComposite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit modelBiomed Pharmacother20189760060610.1016/j.biopha.2017.10.11029101803
  • YePYuBDengJSheRFHuangWLApplication of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defectExp Ther Med20171465547555310.3892/etm.2017.523129285090
  • National Health and Family Planning CommissionChinese Citizens Nutrition and Chronic Disease Report 2015Beijing (China)People’s Medical Publishing House2015
  • LiuDBHanXSHuangWLDengJSheRFStudy on the differentiation of rat bone marrow mesenchymal stem cells into chondrocytes induced by TGF-beta 3Zhonghua Yi Xue Za Zhi201797362860286510.3760/cma.j.issn.0376-2491.2017.36.01729050153
  • IulianADanLCameliaTClaudiaMSebastianGSynthetic materials for osteochondral tissue engineeringAdv Exp Med Biol20181058315210.1007/978-3-319-76711-6_229691816
  • MaiaFRCarvalhoMROliveiraJMReisRLTissue engineering strategies for osteochondral repairAdv Exp Med Biol2018105935337110.1007/978-3-319-76735-2_1629736582
  • ShimomuraKMoriguchiYMurawskiCDYoshikawaHNakamuraNOsteochondral tissue engineering with biphasic scaffold: current strategies and techniquesTissue Eng Part B Rev201420546847610.1089/ten.TEB.2013.054324417741
  • HardyJGScheibelTRComposite materials based on silk proteinsProg Polym Sci20103591093111510.1016/j.progpolymsci.2010.04.005
  • RockwoodDNPredaRCYücelTWangXLovettMLKaplanDLMaterials fabrication from Bombyx mori silk fibroinNat Protoc20116101612163110.1038/nprot.2011.37921959241
  • LevengoodSLZhangMChitosan-based scaffolds for bone tissue engineeringJ Mater Chem B20142213161318410.1039/C4TB00027G24999429
  • KohLDChengYTengCPStructures, mechanical properties and applications of silk fibroin materialsProg Polym Sci2015468611010.1016/j.progpolymsci.2015.02.001
  • WrayLSHuXGallegoJEffect of processing on silk-based biomaterials: reproducibility and biocompatibilityJ Biomed Mater Res B Appl Biomater20119918910110.1002/jbm.b.3187521695778
  • YounesIRinaudoMChitin and chitosan preparation from marine sources. Structure, properties and applicationsMar Drugs20151331133117410.3390/md1303113325738328
  • LiZYubaoLAipingYXuelinPXuejiangWXiangZPreparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materialsJ Mater Sci Mater Med200516321321910.1007/s10856-005-6682-315744612
  • VeleirinhoBCoelhoDSDiasPFMaraschinMRibeiro-do-ValleRMLopes-da-SilvaJANanofibrous poly(3-hydroxybutyrate-co-3- hydroxyvalerate)/chitosan scaffolds for skin regenerationInt J Biol Macromol201251434335010.1016/j.ijbiomac.2012.05.02322652216
  • FratterAFrareCUrasGNew chitosan salt in gastro-resistant oral formulation could interfere with enteric bile salts emulsification of diet fats: preliminary laboratory observations and physiologic rationaleJ Med Food201417672372910.1089/jmf.2013.013124827073
  • HamedIOzogulFRegensteinJMIndustrial applications of crustacean by products (chitin, chitosan, and chitooligosaccharides): a reviewTrends Food Sci Tech201648405010.1016/j.tifs.2015.11.007
  • ChengHChabokRGuanXSynergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cellsActa Biomater20186934235110.1016/j.actbio.2018.01.01629366976
  • RatnayakeJTBMucaloMDiasGJSubstituted hydroxyapatites for bone regeneration: a review of current trendsJ Biomed Mater Res B Appl Biomater201710551285129910.1002/jbm.b.3365126991026
  • DiezMKangMHKimSMKimHESongJHydroxyapatite (HA)/poly-L-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applicationsJ Mater Sci Mater Med20162723410.1007/s10856-015-5643-826704551
  • KimSMJoJHLeeSMHydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone responseJ Biomed Mater Res A2014102242944110.1002/jbm.a.3471823533169
  • RabieeSMMoztarzadehFSolati-HashjinMSynthesis and characterization of hydrox-yapatite cementJ Mol Struct20109691–317217510.1016/j.molstruc.2010.01.068
  • WłodarskiKHWłodarskiPKGalusRBioactive composites for bone regeneration. ReviewOrtop Traumatol Rehabil200810320121018552757
  • ChiuCKFerreiraJLuoTJGengHLinFCKoCCDirect scaffolding of biomimetic hydroxyapatite-gelatin nanocomposites using aminosilane cross-linker for bone regenerationJ Mater Sci Mater Med20122392115212610.1007/s10856-012-4691-622669282
  • VenkatesanJKimSKNano-hydroxyapatite composite biomaterials for bone tissue engineering – a reviewJ Biomed Nanotechnol201410103124314025992432
  • PuppiDChielliniFPirasAMChielliniEPolymeric materials for bone and cartilage repairProg Polym Sci201035440344010.1016/j.progpolymsci.2010.01.006
  • PrananingrumWNaitoYGalliSBone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an in vivo study in rabbitsBiomed Mater201611101501210.1088/1748-6041/11/1/01501226836201
  • VanherckKKoeckelberghsGVankelecomICrosslinking polyimides for membrane applications: a reviewProg Polym Sci201338687489610.1016/j.progpolymsci.2012.11.001
  • XuJLiuXRenXGaoGThe role of chemical and physical crosslinking in different deformation stages of hybrid hydrogelsEur Polym J2018100869510.1016/j.eurpolymj.2018.01.020
  • ZhangXZSituFMPengPJiaoYPChitosan improves the crystallization of silk fibroin: a three-dimensional scaffold material with better mechanical stabilityZhongguo Zuzhi Gongcheng Yanjiu20151218581863
  • ZengSLiuLShiYCharacterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytologyPLoS One2015106e012865810.1371/journal.pone.012865826083846
  • YanCRInfluence of crosslinking on the biological and physical properties of collagenZhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu20093521524
  • EveraertsFTorrianniMHendriksMFeijenJBiomechanical properties of carbodiimide crosslinked collagen: influence of the formation of ester crosslinksJ Biomed Mater Res A200885254755510.1002/jbm.a.3152417729260
  • BaxDVDavidenkoNGullbergDFundamental insight into the effect of carbodiimide crosslinking on cellular recognition of collagen-based scaffoldsActa Biomater20174921823410.1016/j.actbio.2016.11.05927915017
  • MengYLinZLLiuSZWangSZZhuJQArthroscopic osteochondral autologous transplantation for femoral cartilage defect treatment: a 1 to 4 years follow-up studyZhongguo Zuzhi Gongcheng Yanjiu2009133160556058
  • BarberFAChowJCArthroscopic chondral osseous autograft transplantation (COR procedure) for femoral defectsArthroscopy2006221101610.1016/j.arthro.2005.08.04016399455
  • MarcacciMKonEDelcoglianoMFilardoGBusaccaMZaffagniniSArthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7-year follow-upAm J Sports Med200735122014202110.1177/036354650730545517724094
  • KrychAJHarnlyHWRodeoSAWilliamsRJ3rdActivity levels are higher after osteochondral autograft transfer mosaicplasty than after microfracture for articular cartilage defects of the knee: a retrospective comparative studyJ Bone Joint Surg Am2012941197197810.2106/JBJS.K.0081522637203
  • MummeMBarberoAMiotSNasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trialLancet2016388100551985199410.1016/S0140-6736(16)31658-027789021
  • ChadliLCottalordaJDelpontMMazeauPThouveninYLouahemDAutologous osteochondral mosaicplasty in osteochondritis dissecans of the patella in adolescentsInt Orthop201741119720210.1007/s00264-016-3198-z27118373
  • WangQLiRCWangFWangQGWangDMRelationship between mineral density and elastic modulus of human cancelluous boneYiyong Shengwu Lixue2014295456470
  • BrownTDVrahasMSThe apparent elastic modulus of the juxtarticular subchondral bone of the femoral headJ Orthop Res198421323810.1002/jor.11000201066491796
  • DayJSDingMvan der LindenJCHvidISumnerDRWeinansHA decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damageJ Orthop Res200119591491810.1016/S0736-0266(01)00012-211562141
  • ObeidEMAdamsMANewmanJHMechanical properties of articular cartilage in knees with unicompartmental osteoarthritisJ Bone Joint Surg Br19947623153198113301
  • PetersAEAkhtarRComerfordEJBatesKTThe effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee jointSci Rep201881593110.1038/s41598-018-24258-629651151