237
Views
25
CrossRef citations to date
0
Altmetric
Original Research

Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans

, , , , , , , , , & show all
Pages 2341-2348 | Published online: 02 Apr 2019

References

  • JourdanPMLambertonPHLFenwickAAddissDGSoil-transmitted helminth infectionsLancet20183911011725226510.1016/S0140-6736(18)30302-728882382
  • FigueiredoSDPTaddeiJAACMenezesJJCClinical-epidemiological study of toxocariasis in a pediatric populationJ Pediatr (Rio J)200581212613210.2223/JPED.141415858673
  • KumarSPengXDaleyJInhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cellsOncogenesis201764e31910.1038/oncsis.2017.1528414320
  • ZhangZShenWXueJRecent advances in synthetic methods and applications of silver nanostructuresNanoscale Res Lett20181315410.1186/s11671-018-2450-429457198
  • RashidMMOFerdousJBanikSIslamMRUddinAHMMRobelFNAnthelmintic activity of silver-extract nanoparticles synthesized from the combination of silver nanoparticles and M. charantia fruit extractBMC Complement Altern Med201616124210.1186/s12906-016-1219-527457362
  • OvaisMKhalilATIslamNURole of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticlesAppl Microbiol Biotechnol2018102166799681410.1007/s00253-018-9146-729882162
  • ChowdhurySBasuAKunduSGreen synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multi-drug-resistant bacteriaNanoscale Res Lett20149136510.1186/1556-276X-9-36525114655
  • GhareibMTahonMASaifMMEl-Sayed AbdallahWRapid extracellular biosynthesis of silver nanoparticles by Cunninghamella phaeospora culture supernatantIran J Pharm Res201615491592428243290
  • MoazeniMRashidiNShahverdiARNoorbakhshFRezaieSExtracellular production of silver nanoparticles by using three common species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canisIran Biomed J2012161525822562033
  • BasavarajaSBalajiSDLagashettyARajasabAHVenkataramanAExtracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectumMater Res Bull20084351164117010.1016/j.materresbull.2007.06.020
  • Costa SilvaLPPinto OliveiraJKeijokWJExtracellular bio-synthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagransInt J Nanomedicine2017126373638110.2147/IJN.S13770328919741
  • BragaFRAraujoJMAraújoJVIn vitro predatory activity of conidia of fungal isolates of the Duddingtonia flagrans on Angiostrongylus vasorum first-stage larvaeRev Soc Bras Med Trop201346110811010.1590/0037-8682961201323563838
  • BuzattiASantosCPFernandesMAMDuddingtonia flagrans in the control of gastrointestinal nematodes of horsesExp Parasitol20151591410.1016/j.exppara.2015.08.01026208781
  • HiuraELopesACGDa PazJSFungi predatory activity on embryonated Toxocara canis eggs inoculated in domestic chickens (Gallus gallus domesticus) and destruction of second stage larvaeParasitol Res201511493301330810.1007/s00436-015-4459-226032943
  • BragaFRSoaresFEFGiubertiTZNematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvaeVet Parasitol20152123–421421810.1016/j.vetpar.2015.08.01826319197
  • MosmannTRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods1983651–2556310.1016/0022-1759(83)90303-46606682
  • StanilandLNA modification of the Baermann funnel technique for the collection of nematodes from plant materialJ Helminthol1954281–211510.1017/S0022149X0003273913163389
  • BevilaquaCRodriguesMConcordetDIdentification of infective larvae of some common nematode strongylids of horses [Strongylus vulgaris, S. equinus, S. edentatus, Triodontophorus spp., Poteriostomum spp., Gyalocephalus capitatus, Cylicocyclus radiatus, C. nassatus, C. minutus, C. poculatu]Rev Med Vet199314412985989
  • ŢucureanuVMateiAAvramAMFTIR spectroscopy for carbon family studyCrit Rev Anal Chem201646650252010.1080/10408347.2016.115701326941009
  • StuartBInfrared Spectroscopy: Fundamentals and ApplicationsAustráliaJohn Wiley & Sons, Ltd2004
  • SilversteinRAChenYSharma-ShivappaRRBoyetteMDOsborneJAComparison of chemical pretreatment methods for improving saccharification of cotton stalksBioresour Technol200798163000301110.1016/j.biortech.2006.10.02217158046
  • BarbosaLCAEspectroscopia no infravermelho: na caracterização de compostos orgânicosViçosa, MGEd. UFV2007
  • SilversteinRMWebsterFXKiemleDJIdentificação espectrométrica de compostos orgânicos7Rio de JaneiroLTC2006
  • RathodVBanuARanganathEBiosynthesis of highly stabilized silver nanoparticles by Rhizopus stolonifer and their anti-fungal efficacyInt J Curr Biomed Pharm Res201221241245
  • KhorramiSZarrabiAKhaleghiMDanaeiMMozafariMRSelective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial propertiesInt J Nanomedicine2018138013802410.2147/IJN.S18929530568442
  • WojnarowiczJOpalinskaAChudobaTEffect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesisJ Nanomater2016201611510.1155/2016/2789871
  • WalkerRJColquhounLHolden-DyeLPharmacological profiles of the GABA and acetylcholine receptors from the nematode, Ascaris suumActa Biol Hung1992431–459681338558
  • KöhlerPThe biochemical basis of anthelmintic action and resistanceInt J Parasitol200131433634511400692
  • KoppSRColemanGTMcCarthyJSKotzeACApplication of in vitro anthelmintic sensitivity assays to canine parasitology: detecting resistance to pyrantel in Ancylostoma caninumVet Parasitol20081523–428429310.1016/j.vetpar.2007.12.01418242867