111
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Highly sensitive electron paramagnetic resonance nanoradicals for quantitative intracellular tumor oxymetric images

, , , , , & show all
Pages 2963-2971 | Published online: 29 Apr 2019

References

  • Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–458.19519402
  • Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9(12):674–687. doi:10.1038/nrclinonc.2012.17123149893
  • Guo Y, Wu M, Zhao J, Li Y. [Advances in hypoxia microenvironment and chemotherapy-resistant of lung cancer]. Zhongguo Fei Ai Za Zhi=Chin J Lung Cancer. 2014;17(3):265–268. doi:10.3779/j.issn.1009-3419.2014.03.14
  • Tang YA, Chen YF, Bao Y, et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1alpha and TGF-beta2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A. 2018;115(26):E5990–E5999. doi:10.1073/pnas.180134811529891662
  • Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol. 2007;25(26):4066–4067. doi:10.1200/JCO.2007.12.787817827455
  • Elas M, Ahn KH, Parasca A, et al. Electron paramagnetic resonance oxygen images correlate spatially and quantitatively with Oxylite oxygen measurements. Clin Cancer Res. 2006;12(14 Pt 1):4209–4217. doi:10.1158/1078-0432.CCR-05-044616857793
  • Tran LB, Bol A, Labar D, et al. Hypoxia imaging with the nitroimidazole 18F-FAZA PET tracer: a comparison with OxyLite, EPR oximetry and 19F-MRI relaxometry. Radiother Oncol. 2012;105(1):29–35. doi:10.1016/j.radonc.2012.04.01122677038
  • Ortiz-Prado E, Natah S, Srinivasan S, Dunn JF. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2). J Neurosci Methods. 2010;193(2):217–225. doi:10.1016/j.jneumeth.2010.08.01920817029
  • Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat Commun. 2015;6:5834. doi:10.1038/ncomms683425556360
  • Hirakawa Y, Yoshihara T, Kamiya M, et al. Quantitating intracellular oxygen tension in vivo by phosphorescence lifetime measurement. Sci Rep. 2015;5:17838. doi:10.1038/srep1783826644023
  • Lo LW, Koch CJ, Wilson DF. Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: a phosphor with general application for measuring oxygen concentration in biological systems. Anal Biochem. 1996;236:153–160. doi:10.1006/abio.1996.01448619481
  • Eschmann SM, Paulsen F, Reimold M, et al. Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med. 2005;46(2):253–260.15695784
  • McGowan DR, Macpherson RE, Bradley KM, Fenwick JD, Gleeson FV, Higgins GS. 18F-Misonidazole PET-CT scan detection of occult bone metastasis. Thorax. 2016;71(1):97. doi:10.1136/thoraxjnl-2015-20714026349764
  • Tachibana I, Nishimura Y, Hanaoka K, et al. Tumor Hypoxia Detected by (18)F-fluoromisonidazole Positron Emission Tomography (FMISO PET) as a Prognostic Indicator of Radiotherapy (RT). Anticancer Res. 2018;38(3):1775–1781. doi:10.21873/anticanres.1241529491116
  • Adelstein DJ. Squamous Cell Head and Neck Cancer: Recent Clinical Progress and Prospects for the Future. 2005th ed. Totowa, NJ: Humana Press; 2005:978–1588294739. ISBN-13
  • Vavere AL, Lewis JS. Cu-ATSM: a radiopharmaceutical for the PET imaging of hypoxia. Dalton Trans. 2007;(43):4893–4902.17992274
  • Lapi SE, Lewis JS, Dehdashti F. Evaluation of hypoxia with copper-labeled diacetyl-bis(N-methylthiosemicarbazone). Semin Nucl Med. 2015;45(2):177–185. doi:10.1053/j.semnuclmed.2014.10.00325704389
  • Jiang L, Weatherall PT, McColl RW, Tripathy D, Mason RP. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study. J Magn Reson Imaging. 2013;37(5):1083–1092. doi:10.1002/jmri.2389123124705
  • Williams BB, Al Hallaq H, Chandramouli GV, et al. Imaging spin probe distribution in the tumor of a living mouse with 250 MHz EPR: correlation with BOLD MRI. Magn Reson Med. 2002;47(4):634–638. doi:10.1002/(ISSN)1522-259411948723
  • Neugarten J, Golestaneh L. Blood oxygenation level-dependent MRI for assessment of renal oxygenation. Int J Nephrol Renovasc Dis. 2014;7:421–435. doi:10.2147/IJNRD.S4292425473304
  • Halle C, Andersen E, Lando M, et al. Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI. Cancer Res. 2012;72(20):5285–5295. doi:10.1158/0008-5472.CAN-12-108522890239
  • Egeland TA, Gulliksrud K, Gaustad JV, Mathiesen B, Rofstad EK. Dynamic contrast-enhanced-MRI of tumor hypoxia. Magn Reson Med. 2012;67(2):519–530. doi:10.1002/mrm.2301421661044
  • Jensen RL, Mumert ML, Gillespie DL, Kinney AY, Schabel MC, Salzman KL. Preoperative dynamic contrast-enhanced MRI correlates with molecular markers of hypoxia and vascularity in specific areas of intratumoral microenvironment and is predictive of patient outcome. Neuro-Oncology. 2014;16(2):280–291. doi:10.1093/neuonc/not14824305704
  • Krishna MC, Devasahayam N, Cook JA, Subramanian S, Kuppusamy P, Mitchell JB. Electron paramagnetic resonance for small animal imaging applications. ILAR J Nat Res Counc Inst Lab Anim Resour. 2001;42(3):209–218. doi:10.1093/ilar.42.3.209
  • Tsai P, Porasuphatana S, Halpern HJ, Barth ED, Rosen GM. In vivo in situ detection of nitric oxide using low-frequency EPR spectroscopy. Methods Mol Biol. 2002;196:227–237. doi:10.1385/1-59259-274-0:22712152203
  • Reddy TJ, Iwama T, Halpern HJ, Rawal VH. General synthesis of persistent trityl radicals for EPR imaging of biological systems. J Org Chem. 2002;67(14):4635–4639.12098269
  • Liu Y, Villamena FA, Sun J, Wang TY, Zweier JL. Esterified trityl radicals as intracellular oxygen probes. Free Radic Biol Med. 2009;46(7):876–883. doi:10.1016/j.freeradbiomed.2008.12.01119135524
  • Driesschaert B, Marchand V, Leveque P, Gallez B, Marchand-Brynaert J. A phosphonated triarylmethyl radical as a probe for measurement of pH by EPR. Chem commun. 2012;48(34):4049–4051. doi:10.1039/c2cc00025c
  • Redler G, Epel B, Halpern HJ. EPR image based oxygen movies for transient hypoxia. Adv Exp Med Biol. 2014;812:127–133. doi:10.1007/978-1-4939-0620-8_1724729224
  • Matsumoto K, English S, Yoo J, et al. Pharmacokinetics of a triarylmethyl-type paramagnetic spin probe used in EPR oximetry. Magn Reson Med. 2004;52(4):885–892. doi:10.1002/(ISSN)1522-259415389949
  • Matsumoto KI, Hyodo F, Mitchell JB, Krishna MC. Effect of body temperature on the pharmacokinetics of a triarylmethyl-type paramagnetic contrast agent used in EPR oximetry. Magn Reson Med. 2018;79(2):1212–1218. doi:10.1002/mrm.2700829143987
  • Cheng S-H, Hsieh -C-C, Chen N-T, et al. Well-defined mesoporous nanostructure modulates three-dimensional interface energy transfer for two-photon activated photodynamic therapy. Nano Today. 2011;6(6):552–563. doi:10.1016/j.nantod.2011.10.003
  • Chen NT, Souris JS, Cheng SH, et al. Lectin-functionalized mesoporous silica nanoparticles for endoscopic detection of premalignant colonic lesions. Nanomedicine. 2017;13(6):1941–1952. doi:10.1016/j.nano.2017.03.01428363770
  • Elas M, Magwood JM, Butler B, et al. EPR oxygen images predict tumor control by a 50% tumor control radiation dose. Cancer Res. 2013;73(17):5328–5335. doi:10.1158/0008-5472.CAN-13-006923861469
  • Elas M, Hleihel D, Barth ED, et al. Where it‘s at really matters: in situ in vivo vascular endothelial growth factor spatially correlates with electron paramagnetic resonance pO2 images in tumors of living mice. Mol Imaging Biol. 2011;13(6):1107–1113. doi:10.1007/s11307-010-0436-420960236
  • Elas M, Ichikawa K, Halpern HJ. Oxidative stress imaging in live animals with techniques based on electron paramagnetic resonance. Radiat Res. 2012;177(4):514–523.22348251
  • Chen L, Wang Y, Cheng D, et al. Comparing two TAG-72 binding peptides previously identified by phage display as potential imaging agents. Nucl Med Commun. 2011;32(10):920–924. doi:10.1097/MNM.0b013e328348fc6421876403
  • Knight JC, Mosley M, Uyeda HT, et al. In vivo pretargeted imaging of HER2 and TAG-72 expression using the halotag enzyme. Mol Pharm. 2017;14(7):2307–2313. doi:10.1021/acs.molpharmaceut.7b0017228505463
  • Elas M, Magwood JM, Butler B, et al. EPR oxygen images predict tumor control by a 50% tumor control radiation dose. Cancer Res. 2013;73(17):5328–5335. doi:10.1158/0008-5472.CAN-13-006923861469
  • Epel B, Bowman MK, Mailer C, Halpern HJ. Absolute oxygen R-1e imaging in vivo with pulse electron paramagnetic resonance. Magn Reson Med. 2014;72(2):362–368. doi:10.1002/mrm.2492624006331
  • Epel B, Sundramoorthy SV, Mailer C, Halpern HJ. A versatile high speed 250-MHz pulse imager for biomedical applications. Concept Magn Reson B. 2008;33B(3):163–176. doi:10.1002/cmr.b.20119
  • Froncisz W, Hyde JS. The loop-gap resonator: a new microwave lumped circuit ESR sample structure. J Magn Reson. 1982;47:515–521.
  • Kuzhelev AA, Trukhin DV, Krumkacheva OA, et al. Room-temperature electron spin relaxation of triarylmethyl radicals at the X- and Q-bands. J Phys Chem B. 2015;119(43):13630–13640. doi:10.1021/acs.jpcb.5b0302726001103
  • Lammers T, Peschke P, Kühnlein R, et al. Effect of intratumoral injection on the biodistribution and the therapeutic potential of HPMA copolymer-based drug delivery systems. Neoplasia. 2006;8(10):788–795.
  • Huber V, Camisaschi C, Berzi A, et al., Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Seminars in Cancer Biology, 2017, 43, 74–89. doi:10.1016/j.semcancer.2017.03.00128267587
  • Peppicelli S, Andreucci E, Ruzzolini J, et al. The acidic microenvironment as a possible niche of dormant tumor cells. Cell Mol Life Sci. 2017;74(15):2761–2771. doi:10.1007/s00018-017-2496-y28331999
  • Yu Y, Kwon MS, Jung J, et al. Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors. Angewandte Chemie. 2017;56(51):16207–16211. doi:10.1002/anie.20170860629110380