122
Views
21
CrossRef citations to date
0
Altmetric
Original Research

PEGylated and CD47-conjugated nanoellipsoidal artificial antigen-presenting cells minimize phagocytosis and augment anti-tumor T-cell responses

, , , , , , & show all
Pages 2465-2483 | Published online: 08 Apr 2019

References

  • BhargavaAMishraDBanerjeeSMishraPKDendritic cell engineering for tumor immunotherapy: from biology to clinical translationImmunotherapy20124770371810.2217/imt.12.4022853757
  • BolKFSchreibeltGGerritsenWRde VriesIJFigdorCGDendritic cell-based immunotherapy: state of the art and beyondClin Cancer Res20162281897190610.1158/1078-0432.CCR-15-139927084743
  • KimJVLatoucheJBRiviereISadelainMThe ABCs of artificial antigen presentationNat Biotechnol200422440341010.1038/nbt95515060556
  • GreenJJElisseeffJHMimicking biological functionality with polymers for biomedical applicationsNature2016540763338639410.1038/nature2100527974772
  • MeyerRASunshineJCGreenJJBiomimetic particles as therapeuticsTrends Biotechnol201533951452410.1016/j.tibtech.2015.07.00126277289
  • PericaKKosmidesAKSchneckJPLinking form to function: biophysical aspects of artificial antigen presenting cell designBiochim Biophys Acta20151853478179010.1016/j.bbamcr.2014.09.00125200637
  • WangCSunWYeYBombaHNGuZBioengineering of artificial antigen presenting cells and lymphoid organsTheranostics20177143504351610.7150/thno.1901728912891
  • RhodesKRGreenJJNanoscale artificial antigen presenting cells for cancer immunotherapyMol Immunol201898131810.1016/j.molimm.2018.02.01629525074
  • GiannoniFBarnettJBiKClustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membraneJ Immunol200517463204321115749850
  • PericaKDe Leon MederoADuraiMNanoscale artificial antigen presenting cells for T cell immunotherapyNanomedicine201410111912910.1016/j.nano.2013.06.01523891987
  • LuXJiangXLiuRZhaoHLiangZAdoptive transfer of pTRP2-specific CTLs expanding by bead-based artificial antigen-presenting cells mediates anti-melanoma responseCancer Lett2008271112913910.1016/j.canlet.2008.05.04918621475
  • ShenCChengKMiaoSLatex bead-based artificial antigen-presenting cells induce tumor-specific CTL responses in the native T-cell repertoires and inhibit tumor growthImmunol Lett20131501–211110.1016/j.imlet.2013.01.00323328744
  • SunshineJCPericaKSchneckJPGreenJJParticle shape dependence of CD8+ T cell activation by artificial antigen presenting cellsBiomaterials201435126927710.1016/j.biomaterials.2013.09.05024099710
  • ZhangLWangLShahzadKAParacrine release of IL-2 and anti-CTLA-4 enhances the ability of artificial polymer antigen-presenting cells to expand antigen-specific T cells and inhibit tumor growth in a mouse modelCancer Immunol Immunother20176691229124110.1007/s00262-017-2016-928501941
  • KosmidesAKMeyerRAHickeyJWBiomimetic biodegradable artificial antigen presenting cells synergize with PD-1 blockade to treat melanomaBiomaterials2017118162610.1016/j.biomaterials.2016.11.03827940380
  • SteenblockERWrzesinskiSHFlavellRAFahmyTMAntigen presentation on artificial acellular substrates: modular systems for flexible, adaptable immunotherapyExpert Opin Biol Ther20099445146410.1517/1471259090284921619344282
  • SukJSXuQKimNHanesJEnsignLMPEGylation as a strategy for improving nanoparticle-based drug and gene deliveryAdv Drug Deliv Rev201699Pt A285110.1016/j.addr.2015.09.01226456916
  • AshleyCECarnesECPhillipsGKThe targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayersNat Mater201110538939710.1038/nmat299221499315
  • MassarelliEPapadimitrakopoulouVWelshJTangCTsaoASImmunotherapy in lung cancerTransl Lung Cancer Res201431536310.3978/j.issn.2218-6751.2014.01.0125806281
  • WalkeyCDOlsenJBGuoHEmiliAChanWCNanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptakeJ Am Chem Soc201213442139214710.1021/ja208433822191645
  • JiangWHuangYAnYKimBYRemodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticlesACS Nano2015998689869610.1021/acsnano.5b0202826212564
  • RodriguezPLHaradaTChristianDAPantanoDATsaiRKDischerDEMinimal “Self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticlesScience2013339612297197510.1126/science.122956823430657
  • TsaiRKRodriguezPLDischerDESelf inhibition of phagocytosis: the affinity of ‘marker of self’ CD47 for SIRPalpha dictates potency of inhibition but only at low expression levelsBlood Cells Mol Dis2010451677410.1016/j.bcmd.2010.02.01620299253
  • GengYDalhaimerPCaiSShape effects of filaments versus spherical particles in flow and drug deliveryNat Nanotechnol20072424925510.1038/nnano.2007.7018654271
  • SharmaGValentaDTAltmanYPolymer particle shape independently influences binding and internalization by macrophagesJ Control Release2010147340841210.1016/j.jconrel.2010.07.11620691741
  • FlorezLHerrmannCCramerJMHow shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cellsSmall20128142222223010.1002/smll.20110200222528663
  • MathaesRWinterGBesheerAEngertJInfluence of particle geometry and PEGylation on phagocytosis of particulate carriersInt J Pharm20144651–215916410.1016/j.ijpharm.2014.02.03724560647
  • MeyerRASunshineJCPericaKBiodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activationSmall201511131519152510.1002/smll.20140236925641795
  • SunshineJCGreenJJNanoengineering approaches to the design of artificial antigen-presenting cellsNanomedicine (Lond)2013871173118910.2217/nnm.13.9823837856
  • BrunsHBessellCVarelaJCCD47 enhances in vivo functionality of artificial antigen-presenting cellsClin Cancer Res20152192075208310.1158/1078-0432.CCR-14-269625593301
  • PagelsRFPrud’hommeRKPolymeric nanoparticles and microparticles for the delivery of peptides, biologics, and soluble therapeuticsJ Control Release201521951953510.1016/j.jconrel.2015.09.00126359125
  • KapoorDNBhatiaAKaurRSharmaRKaurGDhawanSPLGA: a unique polymer for drug deliveryTher Deliv201561415810.4155/tde.14.9125565440
  • HanFYThurechtKJWhittakerAKSmithMTBioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loadingFront Pharmacol2016718510.3389/fphar.2016.0032327445821
  • IqbalMZafarNFessiHElaissariADouble emulsion solvent evaporation techniques used for drug encapsulationInt J Pharm2015496217319010.1016/j.ijpharm.2015.10.05726522982
  • ChampionJAKatareYKMitragotriSMaking polymeric micro- and nanoparticles of complex shapesProc Natl Acad Sci U S A200710429119011190410.1073/pnas.070532610417620615
  • BetancourtTByrneJDSunaryoNPEGylation strategies for active targeting of PLA/PLGA nanoparticlesJ Biomed Mater Res A200991126327610.1002/jbm.a.3224718980197
  • ArnidaJanát-AmsburyMMRayAPetersonCMGhandehariHGeometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophagesEur J Pharm Biopharm201177341742310.1016/j.ejpb.2010.11.01021093587
  • ChampionJAMitragotriSShape induced inhibition of phagocytosis of polymer particlesPharm Res200926124424910.1007/s11095-008-9626-z18548338
  • AvgoustakisKPegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug deliveryCurr Drug Deliv20041432133316305394
  • GrefRLuckMQuellecP‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorptionColloids Surf B Biointerfaces2000183–430131310915952
  • SosaleNGSpinlerKRAlveyCDischerDEMacrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization, a species-specific ‘Marker of Self’ CD47, and target physical propertiesCurr Opin Immunol20153510711210.1016/j.coi.2015.06.01326172292