439
Views
26
CrossRef citations to date
0
Altmetric
Original Research

Antimicrobial and antibiofilm activity of biopolymer-Ni, Zn nanoparticle biocomposites synthesized using R. mucilaginosa UANL-001L exopolysaccharide as a capping agent

, , , , , & show all
Pages 2557-2571 | Published online: 10 Apr 2019

References

  • Wohlleben W, Mast Y, Stegmann E, Ziemert N. Antibiotic drug discovery. Microb Biotechnol. 2016;9(5):541–548. doi:10.1111/1751-7915.1238827470984
  • Pendleton JN, Gorman SP, Gilmore BF. Clinical relevance of the ESKAPE pathogens. Expert Rev Anti Infect Ther. 2013;11(3):297–308. doi:10.1586/eri.13.1223458769
  • Bell BG, Schellevis F, Stobberingh E, Goossens H, Pringle M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis. 2014;14(1):13. doi:10.1186/1471-2334-14-1324405683
  • Spellberg B, Powers JH, Brass EP, Miller LG, Edwards JE. Trends in antimicrobial drug development: implications for the future. Clin Infect Dis. 2004;38(9):1279–1286. doi:10.1086/42093715127341
  • Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. 2017;307(8):481–489. doi:10.1016/j.ijmm.2017.09.01628950999
  • Otter JA, Vickery K, Walker JT, et al. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect. 2015;89(1):16–27. doi:10.1016/j.jhin.2014.09.00825447198
  • Vickery K, Deva A, Jacombs A, Allan J, Valente P, Gosbell IB. Presence of biofilm containing viable multiresistant organisms despite terminal cleaning on clinical surfaces in an intensive care unit. J Hosp Infect. 2012;80(1):52–55. doi:10.1016/j.jhin.2011.07.00721899921
  • Rybtke M, Hultqvist LD, Givskov M, Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J Mol Biol. 2015;427(23):3628–3645. doi:10.1016/j.jmb.2015.08.01626319792
  • Holban AM, Gestal MC, Grumezescu AM. Control of biofilm-associated infections by signaling molecules and nanoparticles. Int J Pharm. 2016;510(2):409–418. doi:10.1016/j.ijpharm.2016.02.04426945736
  • Béguin P. An introduction to polysaccharide biotechnology. Biochimie. 1998;80(4):347. doi:10.1016/S0300-9084(98)80079-5
  • Rendueles O, Kaplan JB, Ghigo J-M. Antibiofilm polysaccharides. Environ Microbiol. 2013;15(2):334–346. doi:10.1111/j.1462-2920.2012.02810.x22730907
  • Bernal P, Llamas MA. Promising biotechnological applications of antibiofilm exopolysaccharides. Microb Biotechnol. 2012;5(6):670–673. doi:10.1111/j.1751-7915.2012.00359.x22905927
  • Valle J, Da Re S, Henry N, et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. PNAS. 2006;103(33):12558–12563. doi:10.1073/pnas.060539910316894146
  • Golberg K, Emuna N, Vinod TP. et al. Novel anti-adhesive biomaterial patches: preventing biofilm with Metal Complex Films (MCF) derived from a microalgal polysaccharide. Adv Mater Interfaces;2016 1500486. doi:10.1002/admi.201500486
  • Pal S, Yoon EJ, Park SH, Choi EC, Song JM. Metallopharmaceuticals based on silver (I) and silver (II) polydiguanide complexes: activity against burn wound pathogens. J Antimicrob Chemother. 2010;65(10):2134–2140. doi:10.1093/jac/dkq29420705628
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346. doi:10.1088/0957-4484/16/10/05920818017
  • Xu FF, Imlay JA. Silver (I), mercury (II), cadmium (II), and zinc (II) target exposed enzymic iron-sulfur clusters when they toxify Escherichia coli. Appl Environ Microbiol. 2012;78(10):3614–3621. doi:10.1128/AEM.07368-1122344668
  • Stanić V, Dimitrijević S, Antić-Stanković J, et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl Surf Sci. 2010;256(20):6083–6089. doi:10.1016/j.apsusc.2010.03.124
  • Bajpai SK, Chand N, Chaurasia V. Nano zinc oxide-loaded calcium alginate films with potential antibacterial properties. Food Bioprocess Technol. 2012;5(5):1871–1881. doi:10.1007/s11947-011-0587-6
  • Das P, Ganguly S, Bose M, et al. Zinc and nitrogen ornamented bluish white luminescent carbon dots for engrossing bacteriostatic activity and Fenton based bio-sensor. Mater Sci Eng C. 2018;88:115–129. doi:10.1016/J.MSEC.2018.03.010
  • Maeda T, Negishi A, Nogami Y, Sugio T. Nickel inhibition of the growth of a sulfur-oxidizing bacterium isolated from corroded concrete. Biosci Biotechnol Biochem. 1996;60(4):626–629. doi:10.1271/bbb.60.626
  • Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mej??a OF. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu-Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int. 2014;24(4):321–328. doi:10.1016/j.pnsc.2014.07.002
  • Garza-Cervantes JA, Chávez-Reyes A, Castillo EC, et al. Synergistic antimicrobial effects of silver/transition-metal combinatorial treatments. Sci Rep. 2017;7(1). doi:10.1038/s41598-017-01017-7
  • Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med. 2013;5(190):190ra81. doi:10.1126/scitranslmed.3006276
  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 2011;5(3):69. doi:10.1049/iet-nbt.2010.003321913788
  • Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev. 2015. doi:10.1039/c4cs00363b
  • Sathiyanarayanan G, Dineshkumar K, Yang Y-H. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol. 2017;1–22. doi:10.1080/1040841X.2017.1306689
  • Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T. General method of synthesis for metal nanoparticles. J Nanoparticle Res. 2004. doi:10.1007/s11051-004-6575-2
  • Saha S, Pal A, Kundu S, Basu S, Pal T. Photochemical green synthesis of calcium-alginate-stabilized ag and au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir. 2010. doi:10.1021/la902950x
  • Ganguly S, Mondal S, Das P, et al. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. NanoStruct NanoObjects. 2018;16:86–95. doi:10.1016/J.NANOSO.2018.05.002
  • Das TK, Bhawal P, Ganguly S, Mondal S, Das NC. A facile green synthesis of amino acid boosted Ag decorated reduced graphene oxide nanocomposites and its catalytic activity towards 4-nitrophenol reduction. Surf Interfaces. 2018;13:79–91. doi:10.1016/J.SURFIN.2018.08.004
  • Cao G, Wang Y. Nanostructures and Nanomaterials. World Scientific; 2011; doi:10.1142/7885
  • Makarov VV, Love AJ, Sinitsyna OV, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6(20):35–44. doi:10.1039/c1gc15386b24772325
  • Kanmani P, Lim ST. Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem. 2013;48(7):1099–1106. doi:10.1016/j.procbio.2013.05.011
  • Chen X, Yan J-K, Wu J-Y. Characterization and antibacterial activity of silver nanoparticles prepared with a fungal exopolysaccharide in water. Food Hydrocoll. 2015;53:69–74. doi:10.1016/j.foodhyd.2014.12.032
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959. doi:10.1021/ac60147a030
  • O’Toole GA. Microtiter dish biofilm formation assay. J Vis Exp. 2011;(47). doi:10.3791/2437
  • Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1966;6(1), 24–27.
  • Gornall AG, Bardawill CJ, David MM. Determination of serum proteins by means of the biuret reaction. J Biol Chem. 1949;177(2):751–766. doi:10.5555/URI:PII:002221434990305418110453
  • Rartels H, Böhmer M. Eine mikromethode 7air kreatininbestimmung. Clin Chim Acta. 1971;32(1):81–85. doi:10.1016/0009-8981(71)90467-05096431
  • Fabiny DL, Ertingshausen G. Automated reaction-rate method for determination of serum creatinine with the CentrifiChem. Clin Chem. 1971;17(8):696–700.5562281
  • Vazquez-Rodriguez A, Vasto-Anzaldo XG, Barboza Perez D, et al. Microbial competition of rhodotorula mucilaginosa uanl-001l and E. coli increase biosynthesis of non-toxic exopolysaccharide with applications as a wide-spectrum antimicrobial. Sci Rep. 2018;8(1):798. doi:10.1038/s41598-017-17908-829335484
  • Garza MTG, Perez DB, Rodriguez AV, et al. Metal-induced production of a novel bioadsorbent exopolysaccharide in a native rhodotorula mucilaginosa from the mexican northeastern region. PLoS One. 2016;11(2):e0148430. doi:10.1371/journal.pone.014843026828867
  • Wang Q, Kang F, Gao Y, Mao X, Hu X. Sequestration of nanoparticles by an EPS matrix reduces the particle-specific bactericidal activity. Sci Rep. 2016;6. doi:10.1038/srep21379
  • Talam S, Karumuri SR, Gunnam N. Synthesis, characterization, and spectroscopic properties of ZnO nanoparticles. ISRN Nanotechnol. 2012;2012:1–6. doi:10.5402/2012/372505
  • Kumar SS, Venkateswarlu P, Rao VR, Rao GN. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett. 2013;3(1):30. doi:10.1186/2228-5326-3-30
  • Sangeetha G, Rajeshwari S, Venckatesh R. Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull. 2011;46(12):2560–2566. doi:10.1016/j.materresbull.2011.07.046
  • Salavati-Niasari M, Davar F, Fereshteh Z. Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J Alloys Compd. 2010;494(1–2):410–414. doi:10.1016/j.jallcom.2010.01.063
  • Salavati-Niasari M, Mir N, Davar F. A novel precursor in preparation and characterization of nickel oxide nanoparticles via thermal decomposition approach. J Alloys Compd. 2010;493(1–2):163–168. doi:10.1016/j.jallcom.2009.11.153
  • Dharmaraj N, Prabu P, Nagarajan S, Kim CH, Park JH, Kim HY. Synthesis of nickel oxide nanoparticles using nickel acetate and poly(vinyl acetate) precursor. Mater Sci Eng B Solid-State Mater Adv Technol. 2006;128(1–3):111–114. doi:10.1016/j.mseb.2005.11.021
  • Ibrahim MAM, Al Radadi RM. Role of glycine as a complexing agent in nickel electrodeposition from acidic sulphate bath. Int J Electrochem Sci. 2015;10:4946–4971. www.electrochemsci.org. Accessed, 2018.
  • Kang F, Alvarez PJ, Zhu D. Microbial extracellular polymeric substances reduce Ag+ to silver nanoparticles and antagonize bactericidal activity. Environ Sci Technol. 2014;48(1):316–322. doi:10.1021/es403796x24328348
  • Aneesh PM, Vanaja KA, Jayaraj MK. Synthesis of ZnO nanoparticles by hydrothermal method. Proc SPIE. 2007;6639(6639):66390. doi:10.1117/12.730364
  • Kalyani P, Kalaiselvi N. Various aspects of LiNiO2 chemistry: a review. Sci Technol Adv Mater. 2005;6(6):689–703. doi:10.1016/j.stam.2005.06.001
  • Hotovy I, Huran J, Spiess L. Characterization of sputtered NiO films using XRD and AFM. J Mater Sci. 2004;39(7):2609–2612. doi:10.1023/B:JMSC.0000020040.77683.20
  • Suvorova EI, Buffat PA. Electron diffraction from micro- and nanoparticles of hydroxyapatite. J Microsc. 1999;196(1):46–58. doi:10.1046/j.1365-2818.1999.00608.x10540256
  • Parham S, Wicaksono DHB, Bagherbaigi S, Lee SL, Nur H. Antimicrobial treatment of different metal oxide nanoparticles: a critical review. J Chinese Chem Soc. 2016;63(4):385–393. doi:10.1002/jccs.201500446
  • Onbasli D, Aslim B. Determination of antimicrobial activity and production of some metabolites by Pseudomonas aeruginosa B1 and B2 in sugar beet molasses. African J Biotechnol. 2008;7(24):4614–4619. doi:10.5897/AJB08.691
  • Liang TW, Wu CC, Cheng WT, et al. Exopolysaccharides and antimicrobial biosurfactants produced by paenibacillus macerans TKU029. Appl Biochem Biotechnol. 2014;172(2):933–950. doi:10.1007/s12010-013-0568-524122708
  • Khan ST, Ahamed M, Alhadlaq HA, Musarrat J, Al-Khedhairy A. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Arch Oral Biol. 2013;58(12):1804–1811. doi:10.1016/j.archoralbio.2013.09.01124200307
  • Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. Journal of the American Chemical Society. 2006;128(30):9798–9808. doi:10.1021/JA061442Z
  • Yilmaz ES, Sidal U. Investigation of antimicrobial effects of a Pseudomonas-originated biosurfactant. Biol Bratislava. 2005;60(6):723–725.
  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomed Nanotechnol. 2011. doi:10.1016/j.nano.2010.10.001
  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006. doi:10.1021/nl052326h
  • Jin T, Sun D, Su JY, Zhang H, Sue HJ. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci. 2009. doi:10.1111/j.1750-3841.2008.01013.x
  • Emami-Karvani Z, Chehrazi P. Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. African J Microbiol Res. 2011. doi:10.5897/AJMR10.159
  • Hosseinkhani P, Zand AM, Imani S, Rezayi M, Rezaei Zarchi S. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dimens. 2011;1(4):279–285. doi:10.7508/IJND.2010.04.006
  • Das P, Bose M, Ganguly S, et al. Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology. 2017. doi:10.1088/1361-6528/aa6714
  • Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrut established biofilms produced by staphylococcus epidermidis. Microbiology. 2009;155(7):2148–2156. doi:10.1099/mic.0.028001-019389780
  • Jiang P, Li J, Han F, et al. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One. 2011;6(4). doi:10.1371/journal.pone.0018514
  • Akhil K, Jayakumar J, Gayathri G, Khan SS. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles. J Photochem Photobiol B Biol. 2016;160:32–42. doi:10.1016/j.jphotobiol.2016.03.015
  • Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog. 2017;111:375–387. doi:10.1016/j.micpath.2017.09.01928916319
  • He F, Yang Y, Yang G, Yu L. Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control. 2010. doi:10.1016/j.foodcont.2010.02.013
  • Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohydr Polym. 2009. doi:10.1016/j.carbpol.2008.09.016
  • Mansouri S, Cuie Y, Winnik F, et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy. Biomaterials. 2006;27(9):2060–2065. doi:10.1016/J.BIOMATERIALS.2005.09.02016202449
  • Patil S, Sandberg A, Heckert E, Self W, Seal S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials. 2007;28(31):4600–4607. doi:10.1016/J.BIOMATERIALS.2007.07.02917675227
  • Klaassen CD. Casarett and Doull’s Toxicology - The Basic Science of Poisons. Vol. 12 New York: McGraw-Hill;2008. doi:10.1036/0071470514
  • Lu X, Chunhua L, Xiaoniao C, Zhuo Y. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species. Food Chem Toxicol. 2016;90:76–83. doi:10.1016/j.fct.2016.02.00226860595
  • Sudhasree S, Shakila Banu A, Brindha P, Kurian GA. Synthesis of nickel nanoparticles by chemical and green route and their comarison in respect to biological effect and toxicity. Toxicol Environ Chem. 2014;96(5):743–754. doi:10.1080/02772248.2014.923148
  • Zemlyanova MA, Akafeva TI, Dovbysh AA, Smirnov SA. Studies and comparative evaluation of the functional and material cumulation of nano and microdisperse nickel oxide consumed by the peroral route. Heal Risk Anal. 2015;(4):36–43. doi:10.21668/health.risk/2015.4.05.eng
  • Kovrižnych JA, Sotníková R, Zeljenková D, Rollerová E, Szabová E. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio. Interdiscip Toxicol. 2014. doi:10.2478/intox-2014-0004
  • Patra P, Mitra S, Debnath N, Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir. 2012. doi:10.1021/la304120k
  • Seok SH, Cho WS, Park JS, et al. Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: biopersistence of nanoparticles and possible solutions. J Appl Toxicol. 2013. doi:10.1002/jat.2862