1,096
Views
115
CrossRef citations to date
0
Altmetric
Original Research

Shape-dependent antimicrobial activities of silver nanoparticles

, , , &
Pages 2773-2780 | Published online: 23 Apr 2019

References

  • Takeshima T, Tada Y, Sakaguchi N, Watari F, Fugetsu B. DNA/Ag nanoparticles as antibacterial agents against gram-negative bacteria. Nanomaterials. 2015;5:284–297. doi:10.3390/nano501028428347012
  • Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Synergistic antibacterial activity of chitosan–silver nanocomposites on Staphylococcus aureus. Nanomaterials. 2016;6:74–88. doi:10.3390/nano6040074
  • Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology. 2011;22:135101. doi:10.1088/0957-4484/22/13/13510121343644
  • Nischala K, Rao TN, Hebalkar N. Silica–silver core–shell particles for antibacterial textile application. Colloid Surf B. 2011;82:203–208. doi:10.1016/j.colsurfb.2010.08.039
  • Sadeghi B, Garmaroudi FS, Hashemi M, Nezhad HR, Nasrollahi A, Ardalan S. Comparison of the anti-bacterial activity on the nanosilver shapes: nanoparticles, nanorods and nanoplates. Adv Powder Technol. 2012;23:22–26. doi:10.1016/j.apt.2010.11.011
  • Suresh AK, Pelletier DA, Doktycz MJ. Relating nanomaterial properties and microbial toxicity. Nanoscale. 2013;5:463–474. doi:10.1039/c2nr32447d23203029
  • Kahru A, Ivask A. Mapping the dawn of nanoecotoxicological research. Acc Chem Res. 2013;46:823–833. doi:10.1021/ar300021223148404
  • Hong X, Wen J, Xiong X, Hu Y. Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environ Sci Pollut Res. 2016;23:4489–4497. doi:10.1007/s11356-015-5668-z
  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–2178. doi:10.1128/AEM.02001-0718245232
  • Helmlinger J, Sengstock C, Groß-Heitfeld C, et al. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 2016;6:18490–18501. doi:10.1039/C5RA27836H
  • Li M, Ma Z, Zhu Y, et al. Toward a molecular understanding of the antibacterial mechanism of copper-bearing titanium alloys against Staphylococcus aureus. AdvHealthcare Mater. 2016;5:554–566. doi:10.1002/adma.19930050707
  • AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009;3:279–290. doi:10.1021/nn800596w19236062
  • Choi O, Hu ZQ. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol. 2008;42:4583–4588.18605590
  • Hackenberg S, Scherzed A, Kessler M, et al. Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201:27–33. doi:10.1016/j.toxlet.2010.12.00121145381
  • Marambio-Jones C, Hoek EM. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12:1531–1551. doi:10.1007/s11051-010-9900-y
  • Raza MA, Kanwal Z, Rauf A, Sabri AN, Riaz S, Naseem S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials. 2016;74:1–15.
  • Alshareef A, Laird K, Cross RBM. Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl Surf Sci. 2017;424:310–315. doi:10.1016/j.apsusc.2017.03.176
  • Xia Y, Xing Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60–103.
  • Wiley B, Sun YG, Mayers B, Xia YN. Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J. 2005;11:454–463. doi:10.1002/(ISSN)1521-376515565727
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73:1712–1720. doi:10.1128/AEM.02218-0617261510
  • Cui L, Chen P, Chen S, et al. In situ study of the antibacterial activity and mechanism of action of silver nanoparticles by surface-enhanced Raman spectroscopy. Anal Chem. 2013;85:5436–5443. doi:10.1021/ac400245j23656550
  • Liu W, Wu Y, Wang C, et al. Impact of silver nanoparticles on human cells effect of particle size. Nanotoxicology. 2010;4:319–330. doi:10.3109/17435390.2010.48374520795913
  • Park MV, Neigh AM, Vermeulen JP, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32:9810–9817. doi:10.1016/j.biomaterials.2011.08.08521944826
  • Gao MJ, Sun L, Wang ZQ, Zhao YB. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mat Sci Eng C. 2013;33:397–404. doi:10.1016/j.msec.2012.09.005
  • Parnklang T, Lertvachirapaiboon C, Pienpinijtham P, Wongravee K, Thammacharoena C, Ekgasit S. H2O2-triggered shape transformation of silver nanospheres to nanoprisms with controllable longitudinal LSPR wavelengths. RSC Adv. 2013;3:12886–12894. doi:10.1039/c3ra41486h
  • Cheon JY, Park WH. Green synthesis of silver nanoparticles stabilized with mussel-inspired protein and colorimetric sensing of lead(II) and copper(II) ions. Int J Mol Sci. 2016;17:2006. doi:10.3390/ijms17122006
  • Sui M, Zhang L, Sheng L, Huang S, She L. Synthesis of ZnO coated multi-walled carbon nanotubes and their antibacterial activities. Sci Total Environ. 2013;452:148–154. doi:10.1016/j.scitotenv.2013.02.05623500408